
J2EE (Advanced) JAVA

By Mr. K. V. R Page 1

Advanced JAVA (J2EE)

Day - 1:

 In IT we are developing two types of applications; they are standalone applications and

distributed applications.

• A standalone application is one which runs in the context of local disk. With standalone

applications we cannot achieve the concept of data sharing. For example C, C++, COBOL,

PASCAL, etc.

• A distributed application is one which always runs in the context of Browser or World Wide

Web. All distributed applications can be accessed across the globe. For example JAVA and

DOT NET.

JAVA always provides a facility called server independent, platform independent language.

JAVA supports a concept called design patterns (design patterns are predefined proved rules by

industry experts to avoid side effects [recurring problems] which are occurring in software

development).

Day - 2:

 In real time applications, in the case of server side programming one must follow the

architecture to develop a distributed application.

 To develop any distributed application, it is always recommended to follow either 3-tier

architecture or 2-tier architecture or n-tier architecture.

 3-tier architecture is also known as MVC architecture. M stands for Model (database

programming), V stands for View (client side programming, HTML/AWT/APPLET/Swing/JSP) and C

stands for Controller (server side programming, Servlets).

The general architecture of MVC or 3-tier:

1. Client makes a request.

2. Server side program receives the request.

3. The server looks for or search for the appropriate resource in the resource pool.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 2

4. If the resource is not available server side program displays a user friendly message (page

cannot be displayed). If the resource is available, that program will execute gives its result to

server, server interns gives response to that client who makes a request.

5. When server want to deals with database to retrieve the data, server side program sends a

request to the appropriate database.

6. Database server receives the server request and executes that request.

7. The database server sends the result back to server side program for further processing.

8. The server side program is always gives response to ‘n’ number of clients concurrently.

Day - 3:

REFLECTION

“Reflection is the process of obtaining runtime information about the class or interface.”

Runtime information is nothing but deal with the following:

1. Finding the name of the class or interface.

2. Finding the data members of the class or interface.

3. Finding number of constructors (default constructor and number of parameterized

constructors).

4. Number of instance methods.

5. Number of static methods.

6. Determining modifiers of the class (modifiers of the class can be public, final, public + final,

abstract and public + abstract).

7. Obtaining super class of a derived class.

8. Obtaining the interfaces which are implemented by various classes.

Real time applications of reflection:

1. Development of language complier, debuggers, editors and browsers.

2. In order to deal with reflection in java, we must import a predefined package called

java.lang.reflect.*

3. The package reflect contains set of predefined classes and interfaces which are used by the

programmer to develop reflection applications.

Number of ways to obtain runtime information about a class (or) number of ways to get an object

of a class called Class:

 The predefined class called Class is present in a package called java.lang.Class (fully

qualified name of a class called Class is java.lang.Class).

In java we have 4 ways to deal with or to create an object of java.lang.Class, they are:

1) When we know that class name at compile time and to get runtime information about the

class, we must use the following:

2) When we know the object name at runtime, to get the class name or class type of the

runtime object, we must use the following:

J2EE (Advanced) JAVA

By Mr. K. V. R Page 3

 getClass is the predefined method present in a predefined class called java.lang.Object and

whose prototype is given below:

3) When an object is given at runtime, we must find runtime information about current class

and its super class.

Write a java program to print name of the current class and its super class name?

Answer:

class First

{

 public static void main (String [] args)

 {

 String s=new String ("HELLO");

 printSuperclass (s);

 }

 static void printSuperclass (Object s)

 {

 Class c=s.getClass ();

 Class sc=c.getSuperclass ();

 System.out.println ("NAME OF CURRENT CLASS : "+c.getName ());

 System.out.println ("NAME OF THE SUPER CLASS : "+sc.getName ());

 }

};

Output:

java First

NAME OF CURRENT CLASS : java.lang.String

NAME OF THE SUPER CLASS : java.lang.Object

J2EE (Advanced) JAVA

By Mr. K. V. R Page 4

Day - 4:

4) We know the class name at runtime and we have to obtain the runtime information about

the class.

To perform the above we must use the method java.lang.Class and whose prototype is given

below:

When we use the forName as a part of java program it performs the following operations:

• It can create an object of the class which we pass at runtime.

• It returns runtime information about the object which is created.

For example:

try

{

 Class c=Class.forName (“java.awt.Button”);

}

catch (ClassNotFoundException cnfe)

{

 System.out.println (“CLASS DOES NOT EXIST...”);

}

forName is taking String as an argument. If the class is not found forName method

throws an exception called ClassNotFoundException.

Here, forName method is a factory method (a factory method is one which return type is

similar to name of the class where it presents).

Every factory method must be static and public. The class which contains a factory

method is known as Singleton class (a java class is said to be Singleton class through which

we can create single object per JVM).

For example:

java.lang.Class is called Singleton class

Write a java program to find name of the class and its super class name by passing the class name

at runtime?

Answer:

class ref1

{

 public static void main (String [] args)

 {

 if (args.length==0)

 {

 System.out.println ("PLEASE PASS THE CLASS NAME..!");

 }

 else

 {

 try

 {

 Class c=Class.forName (args [0]);

 printSuperclass (c);

J2EE (Advanced) JAVA

By Mr. K. V. R Page 5

 }

 catch (ClassNotFoundException cnfe)

 {

 System.out.println (args [0]+" DOES NOT EXISTS...");

 }

 }// else

 }// main

 static void printSuperclass (Class c)

 {

 String s=c.getName ();

 Class sc=c.getSuperclass ();

 String sn=sc.getName ();

 System.out.println (sn+" IS THE SUPER CLASS OF "+s);

 }// printSuperclass

}// ref1

Output:

java ref1 java.awt.TextField

java.awt.TextComponent IS THE SUPER CLASS OF java.awt.TextField

Write a java program to print super class hierarchy at a current class which is passed from command

prompt?

Answer:

class Hierarchy

{

 public static void main (String [] args)

 {

 if (args.length==0)

 {

 System.out.println ("PLEASE PASS THE CLASS NAME..!");

 }

 else

 {

 try

 {

 Class c=Class.forName (args [0]);

 printHierarchy (c);

 }

 catch (ClassNotFoundException cnfe)

 {

 System.out.println (args [0]+" DOES NOT EXISTS...");

 }

 }

 }

 static void printHierarchy (Class c)

 {

 Class c1=c;

 String cname=c1.getName ();

 System.out.println (cname);

 Class sc=c1.getSuperclass ();

 while (sc!=null)

 {

 cname=sc.getName ();

 System.out.println (cname);

 c1=sc;

 sc=c1.getSuperclass ();

J2EE (Advanced) JAVA

By Mr. K. V. R Page 6

 }

 }

};

Output:

java Hierarchy java.awt.TextField

java.awt.TextField

java.awt.TextComponent

java.awt.Component

java.lang.Object

Obtaining information about CONSTRUCTORS which are present in a class:

In order to get the constructor of the current class we must use the following method:

For example:

Constructor cons []=c.getConstructors ();

System.out.println (“NUMBER OF CONSTRUCTORS = ”+cons.length);

In order to get the parameters of the constructor we must use the following method:

For example:

Class ptype []=cons [0].getParameterTypes ();

Day - 5:

Write a java program to obtain constructors of a class?

Answer:

class ConsInfo

{

 public static void main (String [] args)

 {

 if (args.length==0)

 {

 System.out.println ("PLEASE PASS THE CLASS NAME..!");

 }

 else

 {

 try

 {

 Class c=Class.forName (args [0]);

 printConsts (c);

 }

 catch (ClassNotFoundException cnfe)

 {

 System.out.println (args [0]+" DOES NOT EXISTS...");

 }

 }

 }

 static void printConsts (Class c)

J2EE (Advanced) JAVA

By Mr. K. V. R Page 7

 {

 java.lang.reflect.Constructor Cons []=c.getConstructors ();

 System.out.println ("NUMBER OF CONSTRUCTORS = "+Cons.length);

 System.out.println ("NAME OF THE CONSTRUCTOR : "+c.getName());

 for (int i=0; i<Cons.length; i++)

 {

 System.out.print (c.getName ()+"(");

 Class cp []=Cons [i].getParameterTypes ();

 for (int j=0; j<cp.length; j++)

 {

 System.out.print (cp [j].getName ()+")");

 }

 System.out.println ("\b"+")");

 }

 }

};

Obtaining METHODS information:

In order to obtain information about methods we must use the following methods:

For example:

Method m []=c.getMethods ();

System.out.println (“NUMBER OF METHODS = ”+m.length);

Associated with methods we have return type of the method, name of the method and types of

parameters passed to a method.

The Method class contains the following methods:

1. public Class getReturnType ();

2. public String getName ();

3. public Class [] getParameterTypes ();

Method-1 gives return type of the method, Method-2 gives name of the method and

Method-3 gives what parameters the method is taking.

Write a java program to obtain information about methods which are present in a class?

Answer:

import java.lang.reflect.*;

class MetInfo

{

 public static void main (String [] args)

 {

 try

 {

 if (args.length==0)

 {

 System.out.println ("PLEASE PASS THE CLASS NAME..!");

 }

 else

 {

 Class c=Class.forName (args [0]);

 printMethods (c);

J2EE (Advanced) JAVA

By Mr. K. V. R Page 8

 }

 }

 catch (ClassNotFoundException cnfe)

 {

 System.out.println (args [0]+" DOES NOT EXISTS...");

 }

 }

 static void printMethods (Class c)

 {

 Method m []=c.getMethods ();

 System.out.println ("NUMBER OF METHODS = "+m.length);

 System.out.println ("NAME OF THE CLASS : "+c.getName ());

 for (int i=0; i<m.length; i++)

 {

 Class c1=m [i].getReturnType ();

 String rtype=c1.getName ();

 String mname=m [i].getName ();

 System.out.print (rtype+" "+mname+"(");

 Class mp []=m [i].getParameterTypes ();

 for (int j=0; j<mp.length; j++)

 {

 String ptype=mp [i].getName ();

 System.out.print (ptype+",");

 }

 System.out.println ("\b"+")");

 }

 }

};

Obtaining FIELDS or DATA MEMBERS of a class:

In order to obtain information about fields or data members of the class we must use the following

method.

For example:

Field f []=c.getFields ();

System.out.println (“NUMBER OF FIELDS = ”+f.length);

Associated with field or data member there is a data type and field name:

The Field class contains the following methods:

1. public Class getType ();

2. public String getName ();

Method-1 is used for obtaining data type of the field and Method-2 is used for obtaining

name of the field.

Write a java program to print fields or data members of a class?

Answer:

import java.lang.reflect.Field;

class Fields

{

 void printFields (Class c)

 {

J2EE (Advanced) JAVA

By Mr. K. V. R Page 9

 Field f []=c.getFields ();

 System.out.println ("NUMBER OF FIELDS : "+f.length);

 for (int i=0; i<f.length; i++)

 {

 String fname=f [i].getName ();

 Class s=f [i].getType ();

 String ftype=s.getName ();

 System.out.println (ftype+" "+fname);

 }

 }

};

class FieldsDemo

{

 public static void main (String [] args)

 {

 if (args.length==0)

 {

 System.out.println ("PLEASE PASS THE CLASS NAME..!");

 }

 else

 {

 try

 {

 Class c=Class.forName (args [0]);

 Fields fs=new Fields ();

 fs.printFields (c);

 }

 catch (ClassNotFoundException cnfe)

 {

 System.out.println (args [0]+"NOT FOUND...");

 }

 }

 }

};

Day - 6:

JDBC (Java Database Connectivity)

 “JDBC is a kind of specification developed by SUN Microsystems to store the data

permanently”.

 In Information Technology we have two approaches’ to store the data permanently. They

are through files and through database.

 Whatever data we store permanently in the form of a file, the file will not provide enough

security to the data from unauthorized users.

 In order to save or store the data permanently in the form of a file we must use the concept

of serialization.

Serialization: Serialization is the mechanism of saving the state of the object permanently in the

form of a file.

Steps for developing SERIALIZABLE SUB CLASS:

 A Serializable sub class is one which implements a predefined interface called

java.io.Serializable

J2EE (Advanced) JAVA

By Mr. K. V. R Page 10

1. Choose the appropriate package to keep Serializable sub class.

2. Choose the user defined class whose object participates in Serializable process.

3. Every user defined class must implements a predefined interface called Serializable.

4. Choose the set of data members for Serializable sub class.

5. Develop the set of set methods for each and every data members of the class.

6. Develop the set of get methods for each and every data members of the class.

The above class is known as java bean class or component style based programming or

POJO (Plain Old Java Object) class.

For example:

package ep; //step-1

import java.io.*;

public class Emp implements Serializable // Emp (step-2) & Serializable (step-3)

{

 int empno;

 String ename;

 float sal;

 // above data members (step-4)

 public void setEmpno (int empno)

 {

 this.empno=empno;

 }

 public void setEname (String ename)

 {

 this.ename=ename;

 }

 public void setSal (float sal)

 {

 this.sal=sal;

 } // above set methods (step-5)

 public int getEmpno ()

 {

 return empno;

 }

 public String getEname ()

 {

 return ename;

 }

 public float getSal ()

 {

 return sal;

 } // above get methods (step-6)

};

Day - 7:

Serializable process:

Steps for SERIALIZATION process:

1. Create an object of Serializable sub class.

For example:

sp.emp eo=new sp.emp ();

J2EE (Advanced) JAVA

By Mr. K. V. R Page 11

2. Call set of set methods to place user defined values in a Serializable sub class object.

For example:

eo.setEmpno (10);

eo.setEname (“KVR”);

eo.setSal (10000.00f);

3. Choose the file name and open it into write mode or output mode with the help of

java.io.FileOutputStream

For example:

FileOutputStream fos=new FileOutputStream (“employee”);

4. Since an object of FileOutputStream cannot write the entire object at a time to the file.

Hence, it is recommended to use a predefined class called ObjectOutputStream class.

ObjectOutputStream class contains the following constructor which takes an object of

FileOutputStream class.

 For example:

 ObjectOutputStream oos=new ObjectOutputStream (fos);

5. In order to write the entire object at a time to the file ObjectOutputStream contains the

following method:

For example:

oos.writeObject (eo);

6. Close the files which are opened in write mode.

For example:

oos.close ();

fos.close ();

Write a java program which will save the Serializable sub class object into a file?

Answer:

import ep.Emp;

import java.io.*;

class serp

{

 public static void main (String [] args) throws Exception

J2EE (Advanced) JAVA

By Mr. K. V. R Page 12

 {

 Emp eo=new Emp ();

 eo.setEmpno (100);

 eo.setEname ("KVR");

 eo.setSal (10000.00f);

 FileOutputStream fos=new FileOutputStream ("employee");

 ObjectOutputStream oos=new ObjectOutputStream (fos);

 oos.writeObject (eo);

 System.out.println ("EMPLOYEE OBJECT SAVED SUCCESSFULLY...");

 oos.close ();

 fos.close ();

 }

};

Output:

EMPLOYEE OBJECT SAVED SUCCESSFULLY...

De-Serializable process: It is the process of retrieving the record from the file into main memory of

the computer.

Steps for DE-SERIALIZATION process:

1. Create an object of Serializable sub class.

For example:

emp eo1=new emp ();

2. Choose the file name and open it into read mode with the help of FileInputStream class.

For example:

FileInputStream fis=new FileInputStream (“employee”);

3. Since an object of FileInputStream cannot read the entire object at a time from the file.

Hence, it is recommended to create an object of ObjectInputStream class.

ObjectInputStream class contains the following constructor which takes object of

FileInputStream as a parameter.

For example:

ObjectInputStream ois=new ObjectInputStream (fis);

4. ObjectInputStream class contains the following method which will read the entire object at a

time where ever ObjectInputStream is pointing.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 13

For example:

Object obj=ois.readObject ();

5. An object of Object does not contain set of get methods and they are defined in its sub class

called emp. Hence, an object of Object must be type casted to Serializable sub class object.

For example:

eo1= (emp) obj;

6. Apply set of get methods to obtain the data from de-serialized object i.e., eo1.

For example:

System.out.println (“empno : ”+eo1.getEmpno ());

System.out.println (“empname : ”+eo1.getEname ());

System.out.println (“empsal : ”+eo1.getSal ());

7. Close the files which are opened in read mode or input mode.

For example:

ois.close ();

fis.close ();

Write a java program which will de-Serializable from the specified file?

Answer:

import ep.Emp;

import java.io.*;

class dserp

{

 public static void main (String [] args) throws Exception

 {

 Emp eo1=new Emp ();

 FileInputStream fis=new FileInputStream ("employee");

 ObjectInputStream ois=new ObjectInputStream (fis);

 Object obj=ois.readObject ();

 eo1= (Emp) obj;

 System.out.println ("EMP NO : "+eo1.getEmpno ());

 System.out.println ("EMP NAME : "+eo1.getEname ());

 System.out.println ("EMP SALARY : "+eo1.getSal ());

 ois.close ();

 fis.close ();

 }

};

Output:

EMP NO : 100

EMP NAME : KVR

EMP SAL : 10000.0

Day - 8:

 When we don’t want the variables to participate in serialization process, which type of

variables must be made it as transient i.e., transient variables will not participate in serialization

process.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 14

In general we have four types of serializations, they are:

1. Complete serialization:

It is one in which all the data members of the class will participate in serialization

process.

2. Selective serialization:

It is one in which selective data members of the class (non-transient variables) will

participate in serialization process.

3. Manual serialization:

It is one in which the derived class explicitly implements a predefined interface

called java.io.Serializable. The interface Serializable does not contain any abstract methods

and this type of interface is known as marked or tagged interface.

4. Automatic serialization:

It is one in which the user defined derived class extends sub class of Serializable

interface.

 For example:

 class Bank extends Emp

 {

 ……………..;

 ……………..;

 };

 In real world application we cannot store the data permanently in the form of files. Since, a

file does not provide any security to prevent unauthorized modifications. Hence, it is recommended

to store the data permanently in the form of database.

JDBC:

 In the initial days of database technology various database vendors has developed various

database products. Anybody who want to deal with any database the programmer must have

complete knowledge about the database which they are using i.e., in the initial days all the

databases are available with a specific library (native library) which was developed in ‘C’ language. In

the context the programmer must have complete knowledge about the native library of the

database which is a complex process.

 In later stages all database vendors gathered and developed XOPEN/CLI (Call Level Interface)

software along with Microsoft which is known as ODBC (Open Database Connectivity).

 ODBC is having a common API or library for various databases and it is also developed in ‘C’

language and it is a platform dependent.

 In later stages SUN micro systems has developed a general specification called JDBC which

contains a common API for all databases with platform independent.

 In order to deal with any database to represent the data permanently, we must use driver (a

driver is a software which acts as a middle layer between database and front end application i.e.,

java) of the specific database. In real world we have various drivers are available for various

database products.

Types of DRIVERS:

 SUN micro systems has divided various database drivers of various database products into

four types, they are:

1. Type-1 (JDBC-ODBC bridge driver).

J2EE (Advanced) JAVA

By Mr. K. V. R Page 15

2. Type-2 (Native or partial java drivers).

3. Type-3 (Net protocol or intermediate database server access drivers) and

4. Type-4 (Thin drivers or pure drivers or all java drivers).

Steps for developing a JDBC program:

1. Loading the drivers.

2. Obtain the connection or specify the URL.

3. Pass the query.

4. Process the result which is obtained from database.

5. Close the connection.

Day - 9:

 JDBC is the standard specification released by SUN micro systems to develop the

applications in database world. JDBC contains set of interfaces and these interfaces are implemented

by various database vendors and server vendors.

 A driver is nothing but a java class which acts as a middle layer between java program and

database program. As on today all the drivers are developed by either database vendors or server

vendors.

For example:

class x implements ___

{

 …………;

 …………;

 …………;

};

Here, x is driver and ___ is JDBC interface.

 In database world, each and every database vendor has developed their drivers and released

to the market in the form of jar files.

TYPE-1 DRIVERS

 These are developed by SUN micro systems. The name of the Type-1 driver is

JdbcOdbcDriver. The driver JdbcOdbcDriver is found in a package called sun.jdbc.odbc. Using this

driver we can develop only 2-tier applications (a java program and database). This type of driver is

purely implemented in ‘C’ language and this driver is platform dependent in nature.

Loading the drivers:

 Loading the drivers is nothing but creating an object of appropriate Driver class. In order to

load the drivers we have two ways, they are:

1) Using Class.forName

 For example:

 Class.forName (Sun.jdbc.odbc.JdbcOdbcDriver);

 Class.forName (oracle.jdbc.driver.OracleDriver);

2) Using DriverManager.registerDriver

 DriverManager class contains the following method which will load the driver at

runtime.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 16

For example:

public static void registerDriver (java.sql.Driver);

 Driver is an interface which is implemented by various database vendors and server

vendors. If the appropriate driver object is created that driver object will act as a middle

layer between program and database. If the driver is not found we get an exception called

java.sql.SQLException

For example:

DriverManager.registerDriver (new Sun.jdbc.odbc.JdbcOdbcDriver);

[for oracle driver is – classes111.jar]

Day - 10:

How to obtain the connection: After loading the drivers, it is required to obtain the connection

from the database.

Syntax or URL for obtaining connection:

 Here, jdbc is the main protocol which takes java request and hand over into database

environment through Data Source Name. odbc is the sub protocol which takes the database result

and gives to java environment. Data Source Name is the configuration tool in the current working

machine through which the data is passing from java environment to database and database to java

environment.

 In order to obtain the connection from the database, as a part of jdbc we have a predefined

class called java.sql.DriverManager which contains the following methods:

1. public static Connection getConnection (String URL);

2. public static Connection getConnection (String URL, String username, String password);

Method-1, we use to obtain the connection from those databases where there is no

username and password databases. Method-2 is used for those databases where there is username

and password.

For example:

Connection con1=DriverManager.getConnection (“jdbc : odbc : Access”);

Connection con2=DriverManager.getConnection (“jdbc : odbc : oracle”,”scott”,”tiger”);

Pass the query: A query is nothing but a request or question to the database.

Queries are of three types; they are static query, dynamic or pre-compiled query and stored

procedures.

STATIC QUERY: Static query is one in which the data is passed in the query itself.

For example:

1. select * from Student where marks>50;

2. insert into Student values (100, ‘abc’, 90.86);

In order to execute static queries we must obtain an object of java.sql.Statement interface.

In the interface java.sql.Connection we have the following method for obtaining an object of

Statement interface.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 17

For example:

Statement st=con1.createStatement ();

On database three categories of operations takes place, they are insertion, deletion and

updation. In order to perform these operations we must use the following method which is present

in Statement interface.

 Here, String represents either static insertion or static deletion or static updation. The return

type int represents the status of the query. If the query is not successful it returns zero and if the

query is successful it returns non-zero.

Write a jdbc program which will insert a record in the Student database?

Answer:

import java.sql.*;

class InsertRec

{

 public static void main (String [] args)

 {

 try

 {

 Driver d=new Sun.jdbc.odbc.JdbcOdbcDriver ();

 DriverManager.registerDriver (d);

 System.out.println ("DRIVERS LOADED...");

 Connection con=DriverManager.getConnection ("jdbc:odbc:oradsn","scott","tiger");

 System.out.println ("CONNECTION ESTABLISHED...");

 Statement st=con.createStatement ();

 int i=st.executeUpdate ("insert into student values (10,'suman',60.87);");

 System.out.println (i+" ROWS SELECTED...");

 con.close ();

 }

 catch (Exception e)

 {

 System.out.println ("DRIVER CLASS NOT FOUND...");

 }

 }

};

Day - 11:

Processing the query result:

 In order to execute the select statement or in order to retrieve the data from database we

must use the following method which is present in java.sql.Statement interface.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 18

 Here, String represents a query which contains select statement. executeQuery returns an

object of ResultSet to hold the number of records returned by select statement. ResultSet is an

interface whose object contains all the records returned by a query and it will point to just before

the first record.

For example:

ResultSet rs=st.executeQuery (“select * from Student”);

The ResultSet object is pointing by default just before the first record, in order to bring first

record we must use the below given method. Method returns true when rs contains next record

otherwise it returns false.

public boolean next ();

 In order to obtain the data of the record (collection of field values) we must use the

following method:

public String getString (int colno);

Whatever the data retrieving from the record that data will be treated as string data.

For example:

String s1=rs.getString (1);

String s1=rs.getString (2);

String s1=rs.getString (3);

Write a java program to retrieve the data from emp database?

Answer:

import java.sql.*;

class SelectData

{

 public static void main (String [] args) throws Exception

 {

 DriverManager.registerDriver (new Sun.jdbc.odbc.JdbcOdbcDriver ());

 System.out.println ("DRIVERS LOADED...");

 Connection con=DriverManager.getConnection ("jdbc:odbc:oradsn","scott","tiger");

 System.out.println ("CONNECTION ESTABLISHED...");

 Statement st=con.createStatement ();

 ResultSet rs=st.executeQuery ("select * from dept");

 while (rs.next ())

 {

 System.out.println (rs.getString (1)+" "+rs.getString (2)+" "+rs.getString (3));

 }

 con.close ();

J2EE (Advanced) JAVA

By Mr. K. V. R Page 19

 }

};

ResultSet:

1. An object of ResultSet allows us to retrieve the data by default only in forward direction but

not in backward direction and random retrieval.

2. Whenever we get the database data in ResultSet object which will be temporarily

disconnected from the database.

3. ResultSet object does not allows us to perform any modifications on ResultSet object.

4. Hence, the ResultSet is by default non-scrollable disconnected ResultSet.

DYNAMIC or PRE-COMPILED QUERIES:

1. Dynamic queries are those for which the data is passed at runtime.

2. To execute dynamic queries we must obtain an object of PreparedStatement.

Differentiate between Statement and PreparedStatement?

Answer:

Statement PreparedStatement

1. This interface is used for executing static

queries.

1. This interface is used for executing

dynamic queries.

2. When we execute static queries with

respect to Statement object;

compilation, parsing and execution of

the query takes place each and every

time.

2. When we execute dynamic queries using

PreparedStatement object; compilation,

parsing and execution of the query takes

place first time and from second time

onwards only execution phase takes

place.

3. There is a possibility of loosing

performance of a jdbc program. Since,

compilation, parsing and execution

taking place each and every time.

3. We can get the performance of jdbc

program. Since, compilation and parsing

takes place only one time.

In order to obtain an object of PreparedStatement we must use the following method:

Here, String represents dynamic query.

For example:

PreparedStatement ps=con.prepareStatement (“select * from dept where deptno=?”);

Here, the ‘?’ is known as dynamic substitution operator or positional parameter. The

position of the positional parameters must always starts from left to right with the numbers 1,

2……n.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 20

In order to set the values to the positional parameters, we must use the following methods which

are present in prepared statement interface.

public void setByte (int, byte);

public void setShort (int, short);

public void setInt (int, int);

public void setLong (int, long);

public void setFloat (int, float);

public void setDouble (int, double);

public void setChar (int, char);

public void setString (int, string);

In general PreparedStatement interface contains the following generalized method to set the values

for positional parameters.

public void setXXX (int, XXX);

 Here, int represents position number of the positional parameter. XXX represents value of

either fundamental data type or string or date.

For example:

ps.setInt (1, 10);

In order to execute the DCL statements (select) and DML statements (insert, delete and update) we

must use the following methods which are present in PreparedStatement interface.

public int executeUpdate (); � Dynamic DML/DDL

public ResultSet executeQuery (); � Dynamic DCL (select)

For example:

ResultSet rs=ps.executeQuery ();

Close connection

For example:

con.close ();

Day - 12:

Write a java program to insert a record in dept database by accepting the data from keyboard at

runtime using dynamic queries?

Answer:

import java.sql.*;

import java.io.*;

class InsertRecRun

{

 public static void main (String [] args)

 {

 try

 {

 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());

 System.out.println ("DRIVERS LOADED...");

J2EE (Advanced) JAVA

By Mr. K. V. R Page 21

 Connection con=DriverManager.getConnection ("jdbc:oracle:thin:@localhost:1521:

BudDinu","scott","tiger");

 System.out.println ("CONNECTION OBTAINED...");

 PreparedStatement ps=con.prepareStatement ("insert into dept values (?,?,?)");

 DataInputStream dis=new DataInputStream (System.in);

 System.out.println ("ENTER DEPARTMENT NUMBER : ");

 String s1=dis.readLine ();

 int dno=Integer.parseInt (s1);

 System.out.println ("ENTER DEPARTMENT NAME : ");

 String dname=dis.readLine ();

 System.out.println ("ENTER LOCATION NAME : ");

 String loc=dis.readLine ();

 ps.setInt (1, dno);

 ps.setString (2, dname);

 ps.setString (3, loc);

 int i=ps.executeUpdate ();

 System.out.println (i+"ROW(s) INSERTED...");

 con.close ();

 }

 catch (Exception e)

 {

 e.printStackTrace ();

 }

 }// main

};// InsertRecRun

Write a java program to retrieve the records from a specified database by accepting input from

keyboard?

Answer:

import java.sql.*;

import java.io.*;

class SelectDataRun

{

 public static void main (String [] args)

 {

 try

 {

 Class.forName ("Sun.jdbc.odbc.JdbcOdbcDriver");

 System.out.println ("DRIVERS LOADED...");

 Connection con=DriverManager.getConnection ("jdbc:odbc:oradsn","scott","tiger");

 System.out.println ("CONNECTION ESTABLISHED...");

 PreparedStatement ps=con.prepareStatement ("select * from dept where deptno");

 DataInputStream dis=new DataInputStream (System.in);

 System.out.println ("ENTER DEPARTMENT NUMBER : ");

 String s1=dis.readLine ();

 int dno=Integer.parseInt (s1);

 ps.setInt (1, dno);

 ResultSet rs=ps.executeQuery ();

 while (rs.next ())

 {

 System.out.print (rs.getString (1)+" "+rs.getString (2)+" "+rs.getString (3));

 }

 con.close ();

 }

 catch (Exception e)

J2EE (Advanced) JAVA

By Mr. K. V. R Page 22

 {

 e.printStackTrace ();

 }

 }// main

};// SelectDataRun

TYPE – 4 DRIVERS

 In order to avoid the disadvantages of Type-1 drivers, we have to deal with Type-4 drivers.

Disadvantages of Type-1:

1. Since, it is developed in ‘C’ language; this type of driver is treated as platform dependent.

2. These are a waste of memory space. Since, we are creating a DSN (Data Source Name) for

each and every database connection and it leads to less performance.

3. We are unable to develop 3-tier applications.

Advantages of Type-4:

1. This driver gives affective performance for every jdbc application. Since, there is no DSN.

2. Since, this driver is developed in java by database vendors, internally JVM need not to

convert platform dependent to platform independent.

The only disadvantage of Type-4 is we are unable to develop 3-tier applications.

Type-4 drivers are supplied by Oracle Corporation by developing into java language.

OracleDriver is the name of Type-4 driver which is released by Oracle Corporation in the form of

classes111.jar

When we want to make use of Type-4 driver as a part of a java program, we must first set classpath

for oracle driver by using the following:

set CLASSPATH=C:\oracle\ora92\jdbc\lib\classes111.jar;.;

For example:

Class.forName (“oracle.jdbc.driver.OracleDriver”);

In order to obtain the connection from oracle database we must follow the following syntax:

J2EE (Advanced) JAVA

By Mr. K. V. R Page 23

For example:

Connection con=DriverManager.getConnection (“jdbc : oracle : thin :@ localhost

: 1521 : AshaKrishna”, “scott”, “tiger”)

In order to obtain port number and service ID of oracle database we must look for tnsnames.ora

which is found in C:\oracle\ora92\network\admin

Day - 13:

STORED PROCEDURES:

 In general, we are performing the database operations by using ordinary SQL statements.

When we want to execute n number of SQL statements through java program, the java environment

is executing those queries one at a time which leads to lack of performance to a jdbc application.

 In order to improve the performance of jdbc application, it is recommended to write all n

number of SQL statements in a single program (in case of oracle it is called PL/SQL program) and that

program will execute at a time irrespective of number of SQL statements which improves the

performance of a java application.

 A program which contains n number of SQL statements and residing a database

environment is known as stored procedure.

Stored procedures are divided into two types, they are procedure and function.

• A procedure is one which contains block of statements which will return either zero or more

than one value.

Syntax for creating a procedure:

create or replace procedure <procedure name> (parameters if any)

as/is

local variables;

begin

 block of statements;

end;

/

In order to call a procedure from java environment we must call on the name of procedure.

For example:

create or replace procedure proc1

as

 i out number;

 a out number;

 b number;

 c number;

 x in out number;

begin

 i:=40+42;

 b:=10;

 c:=20;

 a:=b+c;

 x:=x+b+c;

end;

/

J2EE (Advanced) JAVA

By Mr. K. V. R Page 24

Create an oracle procedure which takes two input numbers and it must return sum of two numbers,

multiplication and subtraction?

Answer:

create or replace procedure proc2 (a in number, b number, n out number, n2 out

number, n3 out number)

as

begin

 n1:=a+b;

 n2:=a*b;

 n3:=a-b;

end;

/

• A function is one which contains n number of block of statements to perform some

operation and it returns a single value only.

Syntax for creating a function:

create or replace function (a in number, b in number) return <return type>

as

 n1 out number;

begin

 n1:=a+b;

 return (n1);

end;

/

In order to execute the stored procedures from jdbc we must follow the following steps:

1. Create an object of CallableStatement by using the following method:

 Here, String represents a call for calling a stored procedure from database environment.

2. Prepare a call either for a function or for a procedure which is residing in database.

Syntax for calling a function:

“{? = call <name of the function> (?,?,?….)}”

For example:

CallableStatement cs=con.prepareCall (“{? = call fun1 (?,?)}”);

 The positional parameters numbering will always from left to right starting from 1. In the

above example the positional parameter-1 represents out parameter and the positional parameter-2

and parameter-3 represents in parameters.

Syntax for calling a procedure:

“{call <name of the procedure> (?,?,?….)}”

For example:

CallableStatement cs=con.prepareCall (“{call fun1 (?,?,?,?,?)}”);

3. Specify which input parameters are by using the following generalized method:

Public void setXXX (int, XXX);

For example:

cs.setInt (2, 10);

J2EE (Advanced) JAVA

By Mr. K. V. R Page 25

cs.setInt (3, 20);

4. Specify which output parameters are by using the following generalized method:

 In jdbc we have a predefined class called java.sql.Types which contains various data types of

jdbc which are equivalent to database data types.

Java Jdbc Database

int INTEGER number

String VARCHAR varchar2

Short TINY INTEGER number

Byte SMALL INTEGER number

 All the data members which are available in Types class are belongs to public static final

data members.

For example:

cs.registerOutParameter (1, Types.INTEGER);

5. Execute the stored procedure by using the following method:

For example:

cs.execute ();

6. Get the values of out parameters by using the following method:

public XXX getXXX (int);

 Here, int represents position of out parameter. XXX represents fundamental data type or

string or date.

For example:

int x=cs.getInt (1);

System.out.println (x);

Day - 14:

Write a java program which illustrates the concept of function?

Answer:

StuFun:

create or replace function StuFun

(a in number, b in number, n1 out number) return number

as

J2EE (Advanced) JAVA

By Mr. K. V. R Page 26

n2 number;

begin

n1:=a*b;

n2:=a+b;

return (n2);

end;

/

FunConcept.java:

import java.sql.*;

import java.io.*;

class FunConcept

{

 public static void main (String [] args)

 {

 try

 {

 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());

 System.out.println ("DRIVERS LOADED...");

 Connection con=DriverManager.getConnection ("jdbc:oracle:thin:@localhost:1521:

BudDinu","scott","tiger");

 System.out.println ("CONNECTION OBTAINED...");

 DataInputStream dis=new DataInputStream (System.in);

 System.out.println ("ENTER FIRST NUMBER : ");

 String s1=dis.readLine ();

 System.out.println ("ENTER SECOND NUMBER : ");

 String s2=dis.readLine ();

 int n1=Integer.parseInt (s1);

 int n2=Integer.parseInt (s2);

 CallableStatement cs=con.prepareCall ("{?=call ArthFun (?,?,?)}");

 cs.setInt (2, n1);

 cs.setInt (3, n2);

 cs.registerOutParameter (1, Types.INTEGER);

 cs.registerOutParameter (4, Types.INTEGER);

 cs.execute ();

 int res=cs.getInt (1);

 int res1=cs.getInt (4);

 System.out.println ("SUM OF THE NUMBERS : "+res);

 System.out.println ("MULTIPLICATION OF THE NUMBERS : "+res1);

 }

 catch (Exception e)

 {

 e.printStackTrace ();

 }

 }// main

}// FunConcept

Write a java program which illustrates the concept of procedure?

Answer:

StuPro:

create or replace procedure StuPro

(no in number, name in varchar2, loc1 out varchar2)

as

begin

select dname, loc into name, loc1 from dept

J2EE (Advanced) JAVA

By Mr. K. V. R Page 27

where deptno=no;

insert int abc values (no, name, loc1);

end;

/

ProConcept.java:

import java.sql.*;

import java.io.*;

class ProConcept

{

 public static void main (String [] args)

 {

 try

 {

 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());

 System.out.println ("DRIVERS LOADED...");

 Connection con=DriverManager.getConnection ("jdbc:oracle:thin:@localhost:1521:

BudDinu","scott","tiger");

 DataInputStream dis=new DataInputStream (System.in);

 System.out.println ("ENTER DEPARTMENT NUMBER : ");

 String s1=dis.readLine ();

 int n1=Integer.parseInt (s1);

 CallableStatement cs=con.prepareCall ("{call StuPro (?,?,?)}");

 cs.setInt (1,n1);

 cs.registerOutParameter (2, Types.VARCHAR);

 cs.registerOutParameter (3, Types.VARCHAR);

 cs.execute ();

 String res=cs.getString (2);

 String res1=cs.getString (3);

 System.out.println ("DEPARTMENT NAME : "+res);

 System.out.println ("DEPARTMENT LOCATION : "+res1);

 }

 catch (Exception e)

 {

 System.out.println (e);

 }

 }// main

}// ProConcept

Retrieving the data from CONVENTIONAL DATABASE (MS-Excel):

 In real world applications, there is a possibility of retrieving the data from conventional data

bases like ms-excel.

Steps for retrieving data from ms-excel:

1. Create an excel sheet, enter the column names along with data, rename the sheet1 as user

defined name which is treated as table name.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 28

2. Save the excel sheet in a current working directory.

For example:

D:\advanced\jdbc\stbook.xls

3. Create DSN for excel

4. Use xldsn while obtaining a connection from excel.

For example:

Connection con=DriverManager.getConnetion (“jdbc : odbc : xldsn”);

NOTE: In order to refer excel sheet name as a database sheet name we should use the format

[<sheet name> $]

Write a jdbc program to retrieve the data from excel?

Answer:

import java.sql.*;

class XSelect

{

 public static void main (String [] args)

 {

 try

 {

 DriverManager.registerDriver (new Sun.jdbc.odbc.JdbcOdbcDriver ());

 System.out.println ("DRIVERS LOADED...");

 Connection con=DriverManager.getConnection ("jdbc:odbc:xldsn");

 System.out.println ("CONNECTION ESTABLISHED...");

 Statement st=con.createStatement ();

 ResultSet rs=st.executeQuery ("select * from [student$]");

J2EE (Advanced) JAVA

By Mr. K. V. R Page 29

 while (rs.next ())

 {

 System.out.println (rs.getString (1)+" "+rs.getString (2)+" "+rs.getString (3));

 }

 con.close ();

 }

 catch (SQLException sqle)

 {

 sqle.printStackTrace ();

 }

 }// main

};// XSelect

Day - 15:

Metadata:

 Data about data is known as metadata. Metadata can be obtained at two levels, they are

user database details and universal database details.

Obtaining user database details:

In order to obtain user database details we must follow the following procedure:

1. Obtain an object of ResultSetMetaData by using the following method which is present in

ResultSet.

For example:

ResultSetMetaData rsmd=rs.getMetaData ();

2. In general every user database contains number of columns, name of the columns and type

of columns. In order to obtain the above information we must use the following methods

which are present in ResultSetMetaData interface.

public int getColumnCount ();

public String getColumnName ();

public String getColumnLabel ();

public String getColumnType ();

Obtaining universal database details:

When we get a connection from the database we can come to know which database we are using.

To obtain information about universal database we must use the following steps:

1. Obtain an object of DatabaseMetaData by calling the following method which is present in

Connection interface.

For example:

DatabaseMetaData dmd=con.getMetaData ();

J2EE (Advanced) JAVA

By Mr. K. V. R Page 30

2. In general every universal database contains database name, database version, driver name,

driver version, driver major version and driver minor version. To obtain these information,

DatabaseMetaData interface contains the following methods:

public String getDatabaseProductName ();

public String getDatabaseProductVersion ();

public String getDriverName ();

public String getDriverVersion ();

public String getDriverMajorVersion ();

public String getDriverMinorVersion ();

Write a java program which illustrates the concept of DatabaseMetaData and ResultSetMetaData?

Answer:

import java.sql.*;

class MetaData

{

 public static void main (String [] args)

 {

 try

 {

 DriverManager.registerDriver (new Sun.jdbc.odbc.JdbcOdbcDriver ());

 System.out.println ("DRIVERS LOADED...");

 Connection con=DriverManager.getConnection ("jdbc : odbc : oradsn","scott","tiger");

 System.out.println ("CONNECTION ESTABLISHED...");

 // UNIVERSAL DATABASE DETAILS

 DatabaseMetaData dmd=con.getMetaData ();

 System.out.println ("DATABASE NAME : "+dmd.getDatabaseProductName ());

 System.out.println ("DATABASE VERSION : "+dmd.getDatabaseProductVersion ());

 System.out.println ("NAME OF THE DRIVER : "+dmd.getDriverName ());

 System.out.println ("VERSION OF THE DRIVER : "+dmd.getDriverVersion ());

 System.out.println ("MAJOR VERSION OF DRIVER : "+dmd.getDriverMajorVersion ());

 System.out.println ("MINOR VERSION OF DRIVER : "+dmd.getDriverMinorVersion ());

 // USER DATABASE DETAILS

 Statement st=con.createStatement ();

 ResultSet rs=st.executeQuery ("select * from dept");

 ResultSetMetaData rsmd=rs.getMetaData ();

 System.out.println ("NUMBER OF COLUMNS : "+rsmd.getColumnCount ());

 for (int i=1; i<=rsmd.getColumnCount (); i++)

 {

 System.out.println ("NAME OF THE COLUMN : "+rsmd.getColumnName (i));

 System.out.println ("TYPE OF THE COLUMN : "+rsmd.getColumnType (i));

 }

 con.close ();

 }

 catch (Exception e)

 {

 e.printStackTrace ();

 }

 }// main

};// MetaData

J2EE (Advanced) JAVA

By Mr. K. V. R Page 31

Write a java program which points the data of a table along with its column names?

Answer:

import java.sql.*;

class Table

{

 public static void main (String [] args)

 {

 try

 {

 DriverManager.registerDriver (new Sun.jdbc.odbc.JdbcOdbcDriver ());

 System.out.println ("DRIVERS LOADED...");

 Connection con=DriverManager.getConnection ("jdbc:odbc:oradsn","scott","tiger");

 System.out.println ("CONNECTION ESTABLISHED...");

 Statement st=con.createStatement ();

 ResultSet rs=st.executeQuery ("select * from dept");

 ResultSetMetaData rsmd=rs.getMetaData ();

 System.out.println ("==");

 // PRINTING COLUMN NAME

 for (int i=1; i<=rsmd.getColumnCount (); i++)

 {

 System.out.print (rsmd.getColumnName (i)+" ");

 }

 System.out.println ("");

 System.out.println ("==");

 // PRINTING THE DATA OF THE TABLE

 while (rs.next ())

 {

 for (int j=1; j<=rsmd.getColumnCount (); j++)

 {

 System.out.print (rs.getString (j)+" ");

 }

 System.out.println ("");

 }

 con.close ();

 }

 catch (SQLException sqle)

 {

 sqle.printStackTrace ();

 }

 }// main

};// Table

Day - 16:

Developing flexible jdbc applications:

 When we write any jdbc application, we use to specify the specific details regarding driver

names, URL, which database we are using and table names. When we want to change the jdbc

application for some other details regarding driver name, URL, etc., we must change into java

program and we need to compile which leads to higher maintenance activities.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 32

 In order to avoid recompiling a jdbc application we must develop a flexible jdbc application

with the help of resource bundle file or properties file.

 A resource bundle file or properties file is one which contains the data in the form of (key,

value) pair.

For example:

<file name>.<rbf/prop>

NOTE: After creating resource bundle file that file must be stored into current working directory.

How to read the data from RESOURCE BUNDLE FILE:

1. In order to read the data from resource bundle file, open the resource bundle file in read

mode with the help of FileInputStream class.

For example:

FileInputStream fis=new FileInputStream (“db.prop”);

2. Since files does not support to read the data separately in the form of (key, value). Hence, it

is recommended to get the data of the file we must create an object of a predefined class

called java.util.Properties

For example:

Properties p=new Properties ();

3. In order to link ‘fis’ and ‘p’ objects we must use the following method:

For example:

p.load (fis);

4. Obtain the property value by passing property name by using the following method:

public Object get (String);

public Object getProperty (String);

Here, String represents property name or key name.

For example:

String dname= (String) p.get (“Dname”);

String url= (String) p.get (“URL”);

String username= (String) p.get (“Uname”);

String password= (String) p.get (“Pwd”);

String table= (String) p.get (“Tablename”);

 Here, Dname, URL, Uname, Pwd and Tablename are the property names present in resource

bundle file. dname, url, username, password and table are the property values present in resource

bundle file.

Write a java program which illustrates the concept of resource bundle file or how to develop a

flexible jdbc application along with its metadata?

Answer:

rbfdb.prop:

Dname=oracle.jdbc.driver.OracleDriver

URL=jdbc:oracle:thin:@127.0.0.1:1521:oradsn

Uname=scott

J2EE (Advanced) JAVA

By Mr. K. V. R Page 33

Pwd=tiger

Tablename=student

RBFConcept:

import java.sql.*;

import java.io.*;

import java.util.*;

class RBFConcept

{

 public static void main (String [] args)

 {

 try

 {

 FileInputStream fis=new FileInputStream ("rbfdb.prop");

 Properties p=new Properties ();

 p.load (fis);

 String dname= (String) p.get ("Dname");

 String url= (String) p.get ("URL");

 String username= (String) p.get ("Uname");

 String password= (String) p.get ("Pwd");

 String tablename= (String) p.get ("Tablename");

 // loading drivers and obtaining connection

 Class.forName (dname);

 System.out.println ("DRIVERS LOADED...");

 Connection con=DriverManager.getConnection (url, username, password);

 System.out.println ("CONNECTION CREATED...");

 // executing query

 Statement st=con.createStatement ();

 ResultSet rs=st.executeQuery ("select * from"+tablename);

 ResultSetMetaData rsmd=rs.getMetaData ();

 // printing column names

 System.out.println ("=================================");

 for (int i=1; i<=rsmd.getColumnCount (); i++)

 {

 System.out.print (rsmd.getColumnName (i)+" ");

 }

 System.out.println ("");

 System.out.println ("=================================");

 // printing the data

 while (rs.next ())

 {

 for (int j=1; j<=rsmd.getColumnCount (); j++)

 {

 System.out.print (rs.getString (j)+" ");

 }

 }

 con.close ();

 }

 catch (Exception e)

 {

 e.printStackTrace ();

 }

J2EE (Advanced) JAVA

By Mr. K. V. R Page 34

 }// main

};// RSFConcept

Scrollable ResultSet’s and Updatable ResultSet’s:

 Whenever we create an object of ResultSet by default, it allows us to retrieve in forward

direction only and we cannot perform any modifications on ResultSet object. Therefore, by default

the ResultSet object is non-scrollable and non-updatable ResultSet.

Day - 17:

Scrollable ResultSet:

 A scrollable ResultSet is one which allows us to retrieve the data in forward direction as well

as backward direction but no updations are allowed. In order to make the non-scrollable ResultSet as

scrollable ResultSet as scrollable ResultSet we must use the following createStatement which is

present in Connection interface.

Type represents type of scrollability and Mode represents either read only or updatable. The

value of Type and value of Mode are present in ResultSet interface as constant data members and

they are:

int Type

TYPE_FORWARD_ONLY � 1

TYPE_SCROLL_INSENSITIVE � 2

int Mode

CONCUR_READ_ONLY � 3

For example:

Statement st=con.createStatement (ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);

ResultSet rs=st.executeQuery (“select * from student”);

 Whenever we create a ResultSet object, by default, constant-1 as a Type and constant-2 as a

Mode will be assigned.

The following methods which are available in ResultSet interface which allows us to retrieve the data

either in forward direction or in backward direction or in random retrieval:

public boolean next (); � 1

public void beforeFirst (); � 2

public boolean isFirst (); � 3

public void first (); � 4

public boolean isBeforeFirst (); �5

public boolean previous (); � 6

public void afterLast (); � 7

public boolean isLast (); � 8

public void last (); � 9

public boolean isAfterLast (); � 10

public void absolute (int); � 11

public void relative (int); � 12

• Method-1 returns true when rs contains next record otherwise false.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 35

• Method-2 is used for making the ResultSet object to point to just before the first record (it is

by default).

• Method-3 returns true when rs is pointing to first record otherwise false.

• Method-4 is used to point the ResultSet object to first record.

• Method-5 returns true when rs pointing to before first record otherwise false.

• Method-6 returns true when rs contains previous record otherwise false.

• Method-7 is used for making the ResultSet object to point to just after the last record.

• Method-8 returns true when rs is pointing to last record otherwise false.

• Method-9 is used to point the ResultSet object to last record.

• Method-10 returns true when rs is pointing after last record otherwise false.

• Method-11 is used for moving the ResultSet object to a particular record either in forward

direction or in backward direction with respect to first record and last record respectively. If

int value is positive, rs move in forward direction to that with respect to first record. If int

value is negative, rs move in backward direction to that with respect to last record.

• Method-12 is used for moving rs to that record either in forward direction or in backward

direction with respect to current record.

Write a java program which illustrates the concept of scrollable ResultSet?

Answer:

import java.sql.*;

class ScrollResultSet

{

 public static void main (String [] args)

 {

 try

 {

 Class.forName ("Sun.jdbc.odbc.JdbcOdbcDriver");

 System.out.println ("DRIVERS LOADED...");

 Connection con=DriverManager.getConnection ("jdbc:odbc:oradsn","scott","tiger");

 System.out.println ("CONNECTION ESTABLISHED...");

 Statement st=con.createStatement (ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.

CONCUR_READ_ONLY);

 ResultSet rs=st.executeQuery ("select * from emp");

 System.out.println ("RECORDS IN THE TABLE...");

 while (rs.next ())

 {

 System.out.println (rs.getInt (1)+" "+rs.getString (2));

 }

 rs.first ();

 System.out.println ("FIRST RECORD...");

 System.out.println (rs.getInt (1)+" "+rs.getString (2));

 rs.absolute (3);

 System.out.println ("THIRD RECORD...");

 System.out.println (rs.getInt (1)+" "+rs.getString (2));

 rs.last ();

 System.out.println ("LAST RECORD...");

 System.out.println (rs.getInt (1)+" "+rs.getString (2));

 rs.previous ();

 rs.relative (-1);

 System.out.println ("FIRST RECORD...");

 System.out.println (rs.getInt (1)+" "+rs.getString (2));

J2EE (Advanced) JAVA

By Mr. K. V. R Page 36

 con.close ();

 }

 catch (Exception e)

 {

 System.out.println (e);

 }

 }// main

};// ScrollResultSet

Day - 18:

Updatable ResultSet:

 Whenever we create a ResultSet object which never allows us to update the database

through ResultSet object and it allows retrieving the data only in forward direction. Such type of

ResultSet is known as non-updatable and non-scrollable ResultSet.

 In order to make the ResultSet object as updatable and scrollable we must use the following

constants which are present in ResultSet interface.

int Type

TYPE_SCROLL_SENSITIVE

int Mode

CONCUR_UPDATABLE

 The above two constants must be specified while we are creating Statement object by using

the following method:

For example:

Statement st=con.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

 On ResultSet we can perform the following three operations, they are inserting a record,

deleting a record and updating a record.

Steps for INSERTING a record through ResultSet object:

1. Decide at which position we are inserting a record by calling absolute method.

For example:

rs.absolute (3);

2. Since we are inserting a record we must use the following method to make the ResultSet

object to hold the record.

For example:

rs.moveToInsertRow ();

J2EE (Advanced) JAVA

By Mr. K. V. R Page 37

3. Update all columns of the database or provide the values to all columns of database by using

the following generalized method which is present in ResultSet interface.

For example:

rs.updateInt (1, 5);

rs.updateString (2, “abc”);

rs.updateInt (3, 80);

4. Upto step-3 the data is inserted in ResultSet object and whose data must be inserted in the

database permanently by calling the following method:

 It throws an exception called SQLException.

For example:

rs.insertRow ();

Steps for DELETING a record through ResultSet object:

1. Decide which record you want to delete.

For example:

rs.absolute (3); // rs pointing to 3rd record & marked for deletion

2. To delete the record permanently from the database we must call the following method

which is present in ResultSet interface.

For example:

rs.deleteRow ();

Steps for UPDATING a record through ResultSet object:

1. Decide which record to update.

For example:

rs.absolute (2);

2. Decide which columns to be updated.

For example:

rs.updateString (2, “pqr”);

rs.updateInt (3, 91);

J2EE (Advanced) JAVA

By Mr. K. V. R Page 38

3. Using step-2 we can modify the content of ResultSet object and the content of ResultSet

object must be updated to the database permanently by calling the following method which

is present in ResultSet interface.

For example:

rs.updateRow ();

Write a java program which illustrates the concept of updatable ResultSet?

Answer:

import java.sql.*;

class UpdateResultSet

{

 public static void main (String [] args)

 {

 try

 {

 Class.forName ("Sun.jdbc.odbc.JdbcOdbcDriver");

 System.out.println ("DRIVERS LOADED...");

 Connection con=DriverManager.getConnection ("jdbc:odbc:oradsn","scott","tiger");

 System.out.println ("CONNECTION ESTABLISHED...");

 Statement st=con.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.

CONCUR_UPDATABLE);

 ResultSet rs=st.executeQuery ("select * from emp1");

 rs.next ();

 rs.updateInt (2,8000);

 rs.updateRow ();

 System.out.println ("1 ROW UPDATED...");

 rs.moveToInsertRow ();

 rs.updateInt (1, 104);

 rs.updateInt (2, 2000);

 rs.insertRow ();

 System.out.println ("1 ROW INSERTED...");

 rs.absolute (2);

 rs.deleteRow ();

 System.out.println ("1 ROW DELETED...");

 con.close ();

 }

 catch (Exception e)

 {

 e.printStackTrace ();

 }

 }// main

};// UpdateResultSet

NOTE:

 The scrollability and updatability of a ResultSet depends on the development of the driver of

the driver vendors. OracleDriver and JdbcOdbcDriver will support the concept of scrollability and

updatability of a ResultSet but there may be same drivers which are available in the industry which

are not supporting the concept of scrollability and updatability.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 39

BATCH PROCESSING

 In traditional jdbc programming, to perform any transaction (insert, update and delete) we

must send a separate request to database. If there is ‘n’ number of transactions then we must make

‘n’ number of request to the database and finally it leads to poor performance.

Disadvantages of NON-BATCH PROCESSING applications:

1. There is a possibility of leading the database result in inconsistent in the case of interrelated

transactions.

2. Number of Network Round Trips or to and fro calls are more between frontend and backend

application.

To avoid the above disadvantages we must use batch processing.

 Batch processing is the process of grouping ‘n’ number of interrelated transactions in a

single unit and processing at a same time.

Day - 19:

Advantages of BATCH PROCESSING:

1. Batch processing always leads consistency of the database.

2. Number of network round trips or to and fro calls will be reduced.

Steps for developing BATCH PROCESSING application:

1. Every batch processing application must contain only DML (insert, delete and update)

statements.

2. Set the auto commit as false. Since, in jdbc environment by default auto commit is true. In

order to make auto commit as false we must use the following method:

For example:

con.setAutoCommit (false);

3. Prepare set of SQL DML statements and add to batch.

For example:

st.addBatch (“insert into dept values (10,”abc”,”hyd”)”);

4. Execute batch of DML statements by using the following method:

For example:

int res []=st.executeBatch ();

This method returns individual values of DML statements.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 40

5. After completion of batch of statements, commit the database by using the following

method:

For example:

con.commit ();

6. If a single batch statement is not executing then we must rollback the database if required to

its original state by using the following method:

For example:

con.rollback ();

Write a java program which illustrates the concept of Batch processing?

Answer:

import java.sql.*;

class BatchProConcept

{

 public static void main (String [] args) throws Exception

 {

 Class.forName ("Sun.jdbc.odbc.JdbcOdbcDriver");

 System.out.println ("DRIVERS LOADED...");

 Connection con=DriverManager.getConnection ("jdbc:odbc:oradsn","scott","tiger");

 System.out.println ("CONNECTION ESTABLISHED...");

 con.setAutoCommit (false);

 Statement st=con.createStatement ();

 st.addBatch ("insert into student values (3, 'j2ee')");

 st.addBatch ("delete from student where sno=1");

 st.addBatch ("update student set sname='java' where sno=2");

 int res []=st.executeBatch ();

 for (int i=0; i<res.length; i++)

 {

 System.out.println ("NUMBER OF ROWS EFFECTED : "+res [i]);

 }

 con.commit ();

 con.rollback ();

 con.close ();

 }// main

};// BatchProConcept

With batch processing we can obtain effective performance to the jdbc applications by

executing group of SQL DML statements.

Write a java program to create a table through frontend application?

Answer:

import java.sql.*;

class CreateTable

J2EE (Advanced) JAVA

By Mr. K. V. R Page 41

{

 public static void main (String [] args)

 {

 try

 {

 Class.forName ("Sun.jdbc.odbc.JdbcOdbcDriver");

 System.out.println ("DRIVERS LOADED...");

 Connection con=DriverManager.getConnection ("jdbc:odbc:oradsn","scott","tiger");

 System.out.println ("CONNECTION ESTABLISHED...");

 Statement st=con.createStatement ();

 int i=st.executeUpdate ("create table kalyan (eno number (4), ename varchar2 (15))");

 System.out.println ("TABLE CREATED...");

 con.close ();

 }

 catch (Exception e)

 {

 e.printStackTrace ();

 }

 }// main

};// CreateTable

Dealing with DATE

• In order to deal with java date or frontend application date we should use a class called

java.util.Date

• In order to deal with database date or backend application date we should use a class called

java.sql.Date

• java.sql.Date is the subclass of java.util.Date

Converting java.util.Date into java.sql.Date:

 When we are dealing with frontend application we must always take an object of

java.util.Date for representing date and time information but when we are dealing with database

date’s we must take an object of java.sql.Date

In order to convert java.util.Date into java.sql.Date we have two ways:

First way:

Read the date in string format

For example:

System.out.println (“ENTER THE DATE IN DD-MM-YYYY”);

String d1=dis.readLine ();

To convert string date into java.sql.Date we have the following method:

For example:

java.sql.Date sd=java.sql.Date.valueOf (d1);

Second way:

In order to convert string date into java.util.Date we must use the following class:

J2EE (Advanced) JAVA

By Mr. K. V. R Page 42

For example:

SimpleDateFormat sdf=new SimpleDateFormat (“DD-MM-YYYY”);

java.util.Date ud=sdf.parse (d1);

To convert java.util.Date into java.sql.Date we must use the following statement:

For example:

java.sql.Date sd=new java.util.Date (ud.getTime ());

Day - 20:

SERVLETS

 Any company want to develop the website that can be developed in two ways, they are

static website and dynamic website.

• A static website is one where there is no interaction from the end user. To develop static

website we can use the markup languages like HTML, DHMTL, XML, JavaScript etc.

• A dynamic website is one in which there exist end user interaction. To develop dynamic

websites, in industry we have lot of technologies such as CGI (Common Gateway Interface),

java, dot net, etc.

In the recent years SUN micro systems has developed a technology called Servlets to

develop the dynamic websites and also for developing distributed applications.

A distributed application is one which always runs in the context of browser or www. The

result of distributed application is always sharable across the globe. To develop distributed

application one must follow the following:

Client-Server architecture:

• 2-tier architecture (Client program, Database program).

• 3-tier or MVC (Model [Database] View [JSP] Controller [Servlets]) architecture (Client

program, Server program, Database program).

• n-tier architecture (Client program, Firewall program, Server program, Database program).

To exchange the data between client and server we use a protocol caller http which is a part

of TCP/IP.

• A client is the program which always makes a request to get the service from server.

• A server is the program which always receives the request, process the request and gives

response to ‘n’ number of clients concurrently.

 A server is the third party software developed by third party vendors according to SUN micro

systems specification. All servers in the industry are developed in java language only. The basic

purpose of using server is that to get concurrent access to a server side program.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 43

 According to industry scenario, we have two types of servers; they are web server and

application server.

WEB SERVER

1. A web server is one which always

supports http protocol only.

2. Web server does not contain enough

security to prevent unauthorized

users.

3. Web server is not able to provide

enough services to develop effective

server side program.

4. For examples Tomcat server, web

logic server, etc.

APPLICATION SERVER

1. Any protocol can be supported.

2. An application server always provides

100% security to the server side

program.

3. An application server provides effective

services to develop server side program.

4. For examples web logic server, web

sphere server, pramathi server, etc.

NOTE: Web logic server acts as both web server and as well as application server.

 In the initial days of server side programming there is a concept called CGI and this was

implemented in the languages called C and PERL. Because of this approach CGI has the following

disadvantages.

1. Platform dependency.

2. Not enough security is provided.

3. Having lack of performance. Since, for each and every request a new and separate process is

creating (for example, if we make hundreds of requests, in the server side hundreds of new

and separate processes will be created)

To avoid the above problems SUN micro system has released a technology called Servlets.

 A servlet is a simple platform independent, architectural neutral server independent java

program which extends the functionality of either web server or application server by running in the

context of www.

Advantages of SERVLETS over CGI:

1. Servlets are always platform independent.

2. Servlets provides 100% security.

3. Irrespective of number of requests, a single process will be created at server side. Hence,

Servlets are known as single instance multiple thread technology.

Day - 21:

 Servlets is the standard specification released by SUN micro systems and it is implemented

by various server vendors such as BEA corporation (Web logic server), Apache Jakarta (Tomcat

server).

 In order to run any servlet one must have either application server or web server. In order to

deal with servlet programming we must import the following packages:

javax.servlet.*;

javax.servlet.http.*;

J2EE (Advanced) JAVA

By Mr. K. V. R Page 44

Servlet Hierarchy:

• In the above hierarchy chart Servlet is an interface which contains three life cycle methods

without definition.

• GenericServlet is an abstract class which implements Servlet interface for defining life cycle

methods i.e., life cycle methods are defined in GenericServlet with null body.

• Using GenericServlet class we can develop protocol independent applications.

• HttpServlet is also an abstract class which extends GenericServlet and by using this class we

can develop protocol dependent applications.

• To develop our own servlet we must choose a class that must extends either GenericServlet

or HttpServlet.

LIFE CYCLE METHODS of servlets:

In servlets we have three life cycle methods, they are

public void init ();

public void service (ServletRequest req, ServletResponse res);

public void destroy ();

public void init ():

 Whenever client makes a request to a servlet, the server will receive the request and it

automatically calls init () method i.e., init () method will be called only one time by the server

whenever we make first request.

 In this method, we write the block of statements which will perform one time operations,

such as, opening the file, database connection, initialization of parameters, etc.

public void service (ServletRequest, ServletResponse):

 After calling init () method, service () method will be called when we make first request from

second request to further subsequent requests, server will call only service method. Therefore,

service () method will be called each and every time as and when we make a request.

 In service () method we write the block of statements which will perform repeated

operations such as retrieving data from database, retrieving data from file, modifications of

parameters data, etc. Hence, in service () method we always write business logic.

 Whenever control comes to service () method the server will create two objects of

ServletRequest and ServletResponse interfaces.

 Object of ServletRequest contains the data which is passed by client. After processing client

data, the resultant data must be kept in an object of ServletResponse.

 An object of ServletRequest and ServletResponse must be used always within the scope of

service () method only i.e., we cannot use in init () method and destroy () method.

 Once the service () method is completed an object of ServletRequest and an object of

ServletResponse will be destroyed.

public void destroy ():

 The destroy () method will be called by the server in two situations; they are when the

server is closed and when the servlet is removed from server context. In this method we write the

block of statements which are obtained in init () method.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 45

NOTE: Life cycle methods are those which will be called by the server at various times to perform

various operations.

Write a servlet which displays a message “I LOVE MY MOM”?

Answer:

import javax.servlet.*;

import java.io.*;

public class First extends GenericServlet

{

 public First ()

 {

 System.out.println ("I AM FROM DEFAULT CONSTRUCTOR...");

 }

 public void init ()

 {

 System.out.println ("I AM FROM init METHOD...");

 }

 public void service (ServletRequest req, ServletResponse res) throws ServletException, IOException

 {

 System.out.println ("I LOVE MY MOM...");

 System.out.println ("I AM FROM service METHOD...");

 }

 public void destroy ()

 {

 System.out.println ("I AM FROM destroy METHOD...");

 }

};

Day - 22:

web.xml:

1. Whenever client makes a request to a servlet that request is received by server and server

goes to a predefined file called web.xml for the details about a servlet.

2. web.xml file always gives the details of the servlets which are available in the server.

3. If the server is not able to find the requested servlet by the client then server generates an

error (resource not found) [A resource is a program which resides in server].

4. If the requested servlet is available in web.xml then server will go to the servlet, executes

the servlet and gives response back to client.

Every web.xml will contain the following entries:

<web-app>

 <servlet>

 <servlet-name>Asha</servlet-name>

 <servlet-class>First</servlet-class>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 46

 </servlet>

 <servlet-mapping>

 < servlet-name>Asha</servlet-name>

 <url-pattern>Krishna</url-pattern>

 </servlet-mapping>

</web-app>

• While server is executing web.xml control goes to <url-pattern> of <servlet-mapping>

tag. If the requested url and <url-name> web.xml is same then control goes to <servlet-

class> tag of <servlet> and takes the <servlet-name> and executes.

• If the <url-pattern> is not matching, server generates an error.

How to execute the servlets:

In order to execute a servlet we must follow the following directory structure:

Day - 23:

Steps for DEVELOPING a servlet:

1. Import javax.servlet.*, javax.servlet.http.* and other packages if required.

2. Choose user defined class.

3. Whichever class we have chosen in step-2 must extend either GenericServlet or HttpServlet.

4. Override the life cycle methods if required.

FLOW OF EXECUTION in a servlet:

1. Client makes a request. The general form of a request is http://(IP address or DNS

[Domain Naming Service] name of the machine where server is installed) :

(port number of the server) / (Document root) : (Resource name).

 For example:

 http://localhost:7001/DateSer/suman

J2EE (Advanced) JAVA

By Mr. K. V. R Page 47

2. Server receives the request.

3. Server will scan web.xml (contains declarative details) if the requested resource is not

available in web.xml server generates an error called resource not available otherwise server

goes to a servlet.

4. Server will call the servlet for executing.

5. Servlet will execute in the context of server.

6. While server is executing a servlet, server loads an object of servlet class only once (by

calling default constructor).

7. After loading the servlet, the servlet will call init () method only once to perform one time

operations.

8. After completion of init () method, service () method will be called each and every time. As

long as we make number of requests only service () method will be called to provide

business logic.

9. Servlet will call destroy () method either in the case of servlet is removed or in the case of

server is closed.

HOW TO EXECUTE a servlet:

1. Prepare a directory structure.

2. Write a servlet program save it into either document root or document root\SRC.

3. Compile a servlet by setting a classpath.

For Tomcat:

Set classpath=

4. Copy *.class file into document root/WEB-INF/classes folder and write web.xml file.

5. Start the server and copy document root into:

6. Open the browser and pass a request or url

Write a servlet which displays current system date and time?

Answer:

Servlet program: (Since, it’s a package to compile use javac –d . DateServ.java)

package ds;

import javax.servlet.*;

import java.io.*;

import java.util.*;

public class DateServ extends GenericServlet

{

 public DateServ ()

 {

 System.out.println ("SERVLET LOADED...");

 }

 public void init ()

 {

 System.out.println ("I AM FROM init METHOD...");

 }

 public void service (ServletRequest req, ServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 Date d=new Date ();

 String s=d.toString ();

J2EE (Advanced) JAVA

By Mr. K. V. R Page 48

 pw.println ("<h1> WELCOME TO SERVLETS <h1>");

 pw.println ("<h2> CURRENT DATE & TIME IS : "+s+"<h2>");

 }

 public void destroy ()

 {

 System.out.println ("I AM FROM destroy METHOD...");

 }

};

web.xml:

<web-app>

 <servlet>

 <servlet-name>kalyan</servlet-name>

 <servlet-class>ds.DateServ</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>kalyan</servlet-name>

 <url-pattern>/suman</url-pattern>

 </servlet-mapping>

</web-app>

Day - 24:

HttpServlet:

• HttpServlet is the sub-class of GenericServlet.

• HttpServlet contains all the life cycle methods of GenericServlet and the service () method of

GenericServlet is further divided into the following two methods, they are

 public void doGet (HttpServletRequest, HttpServletResponse) throws ServletException, IOException

 public void doPost (HttpServletRequest, HttpServletResponse) throws ServletException, IOException

• Whenever client makes a request, the servlet container (server) will call service () method,

the service () method depends on type of the method used by the client application.

• If client method is get then service () method will call doGet () method and doGet () method

internally creates the objects of HttpServletRequest and HttpServletResponse. Once doGet ()

method is completed its execution, the above two objects will be destroyed.

LIMITATIONS of get method:

1. Whatever data we sent from client by using get method, the client data will be populated or

appended as a part of URL.

For example:

http://localhost:7001/servlet/DDservlet?uname=scott&pwd=tiger

2. Large amount of data cannot be transmitted from client side to server side.

• When we use post method to send client data, that data will be send as a part of method

body and internally the service () method will called doPost () method by creating the

objects of HttpServletRequest and HttpServletResponse.

ADVANTAGES of post method:

1. Security is achieved for client data.

2. We can send large amount of data from client to server.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 49

• HttpServletRequest extends ServletRequest and HttpServletResponse extends

ServletResponse.

• HttpServlet, HttpServletRequest and HttpServletResponse belong to a package called

javax.servlet.http.*

• The request which we make from the client side that requests are known as http requests

where as the responses which are given by a servlet are known as http responses.

NOTE: All real world applications always extends HttpServlet only and it is always recommended to

overwrite either doGet () method or doPost () method.

 Associated with servlet we have three names which are specified in web.xml, they are public

URL name (known to everybody), deployer URL name or dummy name (known to that person who

is deploying) and secret or internal URL name (known to servlet container or server).

• The purpose of <servlet-mapping> is that it maps public URL name to deployer URL name.

• The purpose of <servlet> is that it maps deployer URL name to actual Servlet class name.

Write a servlet which retrieves the data from database?

Answer:

Servlet program:

package ddrs;

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

import java.io.*;

public class RetrieveDataBaseServ extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res)

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 try

 {

 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());

 Connection con=DriverManager.getConnection ("oracle:jdbc:thin:@localhost:1521:

Hanuman", "scott","tiger");

 Statement st=con.createStatement ();

 ResultSet rs=st.executeQuery ("select * from emp");

 while (rs.next ())

 {

 pw.println (rs.getString (1)+" "+rs.getString (2));

 }

 }

 catch (Exception e)

 {

 res.sendError (504,"PROBLEM IN SERVLET...");

 }

 }

};

J2EE (Advanced) JAVA

By Mr. K. V. R Page 50

web.xml:

<web-app>

 <servlet>

 <servlet-name>Babu</servlet-name>

 <serclet-class>ddrs.RetrieveDataBaseServ</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Babu</servlet-name>

 <url-pattern>Dinesh</url-pattern>

 </servlet-mapping>

</web-app>

Day - 25:

 In the above program we are making use of ‘n’ number of servlet classes, OracleDriver class;

it is required to set the classpath for servlet-Api.jar and classes111.jar

For weblogic:

set classpath=F:\bea\weblogic81\server\lib\weblogic.jar;F:\oracle\ora92\jdbc\

lib\classes111.jar;

For Tomcat:

set classpath=F:\Program Files\Apache Software Foundation\Tomcat 5.5\common\

lib\servlet-api.jar;F:\oracle\ora92\jdbc\lib\classes111.jar;

 When we run the above program on weblogic, it is not necessary to copy classes111.jar into

lib folder of document root. Since, the weblogic server itself contains an existing jar file called

ojdbc14.jar to deal with OracleDriver.

How to generate a war file:

 A war file is the compressed form of ‘n’ number of .class files, web.xml, *.html files and the

jar files available in lib folder.

Syntax:

jar cfv (name of the war file) WEB-INF [*.html] [*.jsp]

 Here, in cfv, ‘c’ represents create, ‘f’ represents file and ‘v’ represents verbose (used to

compress)

 Copy the war file from the current directory and paste it into applications folder of weblogic

or webapps folder of Tomcat.

ServletConfig (one per SERVLET):

• ServletConfig is an interface which is present in javax.servlet.* package.

• The purpose of ServletConfig is to pass some initial parameter values, technical information

(driver name, database name, data source name, etc.) to a servlet.

• An object of ServletConfig will be created one per servlet.

• An object of ServletConfig will be created by the server at the time of executing public void

init (ServletConfig) method.

• An object of ServletConfig cannot be accessed in the default constructor of a Servlet class.

Since, at the time of executing default constructor ServletConfig object does not exist.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 51

• By default ServletConfig object can be accessed with in init () method only but not in doGet

and doPost. In order to use, in the entire servlet preserve the reference of ServletConfig into

another variable and declare this variable into a Servlet class as a data member of

ServletConfig.

For example:

 class x extends HttpServlet

Day - 26:

• When we want to give some global data to a servlet we must obtain an object of

ServletConfig.

• web.xml entries for ServletConfig

<servlet>

………….

<init-param>

 <param-name>Name of the parameter</param-name>

 <param-value>Value of the parameter</param-value>

</init-param>

………….

</servlet>

For example:

<servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>serv1</servlet-class>

 <init-param>

 <param-name>v1</param-name>

 <param-value>10</param-value>

 </init-param>

 <init-param>

 <param-name>v2</param-name>

 <param-value>20</param-value>

 </init-param>

</servlet>

The data which is available in ServletConfig object is in the form of (key, vlaue)

OBTAINING an object of ServletConfig:

 An object of ServletConfig can be obtained in two ways, they are by calling getServletConfig

() method and by calling init (ServletConfig).

By calling getServletConfig () method:

 getServletConfig () is the method which is available in javax.servlet.Servlet interface. This

method is further inherited and defined into a class called javax.servlet.GenericServlet and that

method is further inherited into another predefined class called javax.servlet.http.HttpServlet and it

can be inherited into our own servlet class.

For example:

public class serv1 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

J2EE (Advanced) JAVA

By Mr. K. V. R Page 52

 …………

 …………

 ServletConfig config=this.getServletConfig ();

 …………

 …………

 }

};

 In the above example an object config contains (key, value) pair data of web.xml file which

are written under <init-param> tag of <servlet> tag.

By calling init (ServletConfig):

For example:

public class serv2 extends HttpServlet

{

 ServletConfig sc;

 public void init (ServletConfig sc)

 {

 Super.init (sc); // used for calling init (ServletConfig) method of HttpServlet

 this.sc=sc; // ServletConfig object sc is referenced

 }

 …………

 …………

};

RETRIEVING DATA from ServletConfig interface object:

 In order to get the data from ServletConfig interface object we must use the following

methods:

public String getInitParameter (String); � 1

public Enumeration getInitParameterNames (); � 2

Method-1 is used for obtaining the parameter value by passing parameter name.

String val1=config.getInitParameter (“v1”);

String val2=config.getInitParameter (“v2”);

String val3=config.getInitParameter (“v3”);

Method-2 is used for obtaining all parameter names and their corresponding parameter values.

For example:

Enumeration en=config.getInitParameterNames ();

while (en.hasMoreElements ())

{

 Object obj=en.nextElement ();

 String pname= (String) obj;

 String pvalue=config.getInitParameter (pname);

 out.println (pvalue+” is the value of ”+pname);

J2EE (Advanced) JAVA

By Mr. K. V. R Page 53

}

Day - 27:

Serv1.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class Serv1 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 ServletConfig config=getServletConfig ();

 String val1=config.getInitParameter ("v1");

 String val2=config.getInitParameter ("v2");

 String val3=config.getInitParameter ("v3");

 String val4=config.getInitParameter ("v4");

 pw.println ("<h3> Value of v1 is "+val1+"</h3>");

 pw.println ("<h3> Value of v2 is "+val2+"</h3>");

 pw.println ("<h3> Value of v3 is "+val3+"</h3>");

 pw.println ("<h3> Value of v4 is "+val4+"</h3>");

 }

};

Serv2.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class Serv2 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 ServletConfig config=getServletConfig ();

 Enumeration en=config.getInitParameterNames ();

 while (en.hasMoreElements ())

 {

 Object obj=en.nextElement ();

 String pname= (String) obj;

 String pvalue=config.getInitParameter (pname);

 pw.println ("</h2>"+pvalue+" is the value of "+pname+"</h2>");

 }

 }

};

web.xml:

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>Serv1</servlet-class>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 54

 <init-param>

 <param-name>v1</param-name>

 <param-value>10</param-value>

 </init-param>

 <init-param>

 <param-name>v2</param-name>

 <param-value>20</param-value>

 </init-param>

 </servlet>

 <servlet>

 <servlet-name>pqr</servlet-name>

 <servlet-class>Serv2</servlet-class>

 <init-param>

 <param-name>v3</param-name>

 <param-value>30</param-value>

 </init-param>

 <init-param>

 <param-name>v4</param-name>

 <param-value>40</param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/firstserv</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>pqr</servlet-name>

 <url-pattern>/secondserv</url-pattern>

 </servlet-mapping>

</web-app>

Develop a flexible servlet that should display the data of the database irrespective driver name, table

name and dsn name?

Answer:

DbServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

import java.io.*;

public class DbServ extends HttpServlet

{

 ServletConfig sc=null;

 public void init (ServletConfig sc) throws ServletException

 {

 super.init (sc);

 this.sc=sc;

 }

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String dname=sc.getInitParameter ("dname");

 String url=sc.getInitParameter ("url");

 String tab=sc.getInitParameter ("tab");

 try

J2EE (Advanced) JAVA

By Mr. K. V. R Page 55

 {

 Class.forName (dname);

 Connection con=DriverManager.getConnection (url,"scott","tiger");

 Statement st=con.createStatement ();

 ResultSet rs=st.executeQuery ("select * from "+tab);

 while (rs.next ())

 {

 pw.println ("<h2>"+rs.getString (1)+""+rs.getString (2)+""+rs.getString (3)+"</h2>");

 }

 con.close ();

 }

 catch (Exception e)

 {

 res.sendError (503,"PROBLEM IN DATABASE...");

 }

 }

};

web.xml:

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>DbServ</servlet-class>

 <init-param>

 <param-name>dname</param-name>

 <param-value>oracle.jdbc.driver.OracleDriver ()</param-value>

 </init-param>

 <init-param>

 <param-name>url</param-name>

 <param-value>jdbc:oracle:thin:@localhost:1521:Hanuman</param-value>

 </init-param>

 <init-param>

 <param-name>tab</param-name>

 <param-value>emp</param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/dbdata</url-pattern>

 </servlet-mapping>

</web-app>

Day - 28:

ServletContext (one per WEB APPLICATION):

• ServletContext is an interface which is present in javax.servlet.* package.

• Whenever we want to give a common data or global data to the group of servlets which

belongs to same web application then we must create an object of ServletContext interface.

• An object of ServletContext will be created by servlet container (server) whenever we deploy

into the server.

• In order to provide a common data to a group of servlets, we must write that data into

web.xml file with the tag called <context-param>…</context-param>. This tag must be

written with in <web-app>…</web-app> before <servlet>.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 56

• xml entries related to ServletContext interface.

<web-app>

 <context-param>

 <param-name>Name of the param</param-name>

 <param-value>Value of the param</param-value>

 </context-param>

 <servlet>

 …………..

 …………..

 </servlet>

 <servlet-mapping>

 …………..

 …………..

 </servlet-mapping>

</web-app>

• Whatever the data we write with in <context-param>…</context-param> that data will

be paste automatically in the object of ServletContext interface and this object contains the

in the form of (key, value) pair. Here, key represents context parameter name and value

represents context parameter value.

• The value of key must be always unique; if duplicate values are placed we get recent

duplicate value for the key by overlapping previous values.

For example:

<web-app>

 <context-param>

 <param-name>driver</param-name>

 <param-value>oracle.jdbc.driver.OracleDriver</param-value>

 </context-param>

 <context-param>

 <param-name>url</param-name>

 <param-value>jdbc:oracle:thin:@localhost:1521:Hanuman</param-value>

 </context-param>

 <servlet>

 …………..

 …………..

 </servlet>

 <servlet-mapping>

 …………..

 …………..

 </servlet-mapping>

</web-app>

Number of ways to OBTAIN AN OBJECT of ServletContext:

 In order to get an object of ServletContext we have two ways, they are by calling

getServletContext () method directly and by making use of ServletConfig interface.

By using getServletContext () method:

 getServletContext () method is defined in GenericServlet and it is inherited into HttpServlet

and it is further inherited into our own servlet class. Hence, we can call getServletContext () method

directly.

For example:

public class Serv1 extends HttpServlet

{

J2EE (Advanced) JAVA

By Mr. K. V. R Page 57

 public doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 ……………

 ……………

 ServletContext ctx=this.getServletContext ();

 ……………

 ……………

 }

};

By using ServletConfig interface:

 In ServletConfig interface we have the following method which gives an object of

ServletContext.

 In order to call the above method first we must obtain an object of ServletConfig interface

and later with that object we can call getServletContext () method.

For example:

public class Serv2 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 …………

 …………

 ServletConfig config=this.getServletConfig ();

 ServletContext ctx=config.getServletContext ();

 ………….

 ………….

 }

};

Number of ways to RETRIEVE THE DATA from an OBJECT of ServletContext:

 In ServletContext interface we have the following methods to retrieve the value of context

parameter by passing context parameter name.

For example:

ServletContext ctx=getServletContext ();

String val1=ctx.getInitParameter (“v1”);

String val2=ctx.getInitParameter (“v2”);

For example:

ServletContext ctx=getServletContext ();

Enumeration en=ctx.getInitParameterNames ();

While (en.hasMoreElements ())

{

 String cpn= (String) en.nextElement ();

 String cpv=ctx.getInitParameter (cpn);

 pw.println (cpv+” is the value of ”+cpn);

}

J2EE (Advanced) JAVA

By Mr. K. V. R Page 58

Differences between ServletConfig and ServletContext interfaces:

ServletConfig

1. An object of ServletConfig exists one

per servlet.

2. An object of ServletConfig will be

created when init (ServletConfig)

method is executed.

3. ServletConfig object contains a

specific data to a particular servlet.

4. The data to a servlet which related to

ServletConfig object must be written

in <init-param>…</init-param>

with in <servlet>…</servlet> of

web.xml

5. An object of ServletConfig will exists

as long as a specific servlet is

executing.

ServletContext

1. An object of ServletContext exists one per

web application.

2. An object of ServletContext will be created

when we deploy the web application in servlet

container or servlet execution environment.

3. ServletContext object contains a common or

global data to ‘n’ number of servlets and ‘n’

number of JSP’s.

4. The common data or global data related to

ServletContext must be written under

<context-param>…</context-param> with

in <web-app>…</web-app> and outside of

<servlet>…</servlet> of web.xml

5. An object of ServletContext will exists until the

entire web application completed its

execution.

Day - 29:

Write a servlet which illustrate the concept of ServletContext?

Answer:

web.xml:

<web-app>

 <context-param>

 <param-name>v1</param-name>

 <param-value>10</param-value>

 </context-param>

 <context-param>

 <param-name>v2</param-name>

 <param-value>20</param-value>

 </context-param>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>Serv1</servlet-class>

 <init-param>

 <param-name>v3</param-name>

 <param-value>30</param-value>

 </init-param>

 </servlet>

 <servlet>

 <servlet-name>pqr</servlet-name>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 59

 <servlet-class>Serv2</servlet-class>

 <init-param>

 <param-name>v4</param-name>

 <param-value>40</param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/firstserv</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>pqr</servlet-name>

 <url-pattern>/secondserv</url-pattern>

 </servlet-mapping>

</web-app>

Serv1.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class Serv1 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 ServletConfig config=getServletConfig ();

 ServletContext ctx=config.getServletContext ();

 String val1=ctx.getInitParameter ("v1");

 String val2=ctx.getInitParameter ("v2");

 String val3=config.getInitParameter ("v3");

 String val4=config.getInitParameter ("v4");

 int sum=Integer.parseInt (val1)+Integer.parseInt (val2);

 pw.println ("<h3> Value of v1 is "+val1+"</h3>");

 pw.println ("<h3> Value of v2 is "+val2+"</h3>");

 pw.println ("<h3> Value of v3 is "+val3+"</h3>");

 pw.println ("<h3> Value of v4 is "+val4+"</h3>");

 pw.println ("<h2> Sum = "+sum+"</h2>");

 }

};

Serv2.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class Serv2 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 ServletContext ctx=getServletContext ();

 Enumeration en=ctx.getInitParameterNames ();

 while (en.hasMoreElements ())

J2EE (Advanced) JAVA

By Mr. K. V. R Page 60

 {

 Object obj=en.nextElement ();

 String cpname= (String) obj;

 String cpvalue=ctx.getInitParameter (cpname);

 pw.println ("</h2>"+cpvalue+" is the value of "+cpname+"</h2>");

 }

 }

};

Handling CLIENT REQUEST FORM data:

• Whenever we want to send an input to a servlet that input must be passed through html

form.

• An html form is nothing but various controls are inherited to develop an application.

• Every form will accept client data end it must send to a servlet which resides in server side.

• Since html is a static language which cannot validate the client data. Hence, in real time

applications client data will be accepted with the help of html tags by developing form and

every form must call a servlet.

Steps for DEVELOPING a FORM:

1. Use <form>…</form> tag.

2. To develop various controls through <input>…</input> tag and all <input> tag must be

enclosed with in <form>…</form> tag.

3. Every form must call a servlet by using the following:

<form name=”name of the form” action=”either absolute or relative address” method=”get or post”>

…………………

…………………

</form>

Write an html program to develop the following form:

Answer:

<html>

 <title>About Personal Data</title>

 <head><center><h3>Personal Information</h3></center></head>

 <body bgcolor="#D8BFD8">

 <form name="persdata" action="./DataSer">

 <center>

 <table bgcolor="#D2B48C" border="1">

 <tr>

 <th>Enter ur name : </th>

 <td><input type="submit" name="persdata_eurn" value=""></td>

 </tr>

 <tr>

 <th>Enter ur course : </th>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 61

 <td><input type="text" name="persdata_eurc" value=""></td>

 </tr>

 <tr>

 <td align="center"><input type="button" name="persdata_send" value="Send"></td>

 <td align="center"><input type="reset" name="persdata_clear" value="Clear"></td>

 </tr>

 </table>

 </center>

 </form>

 </body>

</html>

Handling HTML DATA in SERVLET:

 In order to handle or obtain the data html form in a servlet, we have the following method

which is present in HttpServletRequest.

For example:

String sno1=req.getParameter (“sno”);

String sname1=req.getParameter (“sname”);

String cname1=req.getParameter (“cname”);

 req is an object of HttpServletRequest.

NOTE: An object of HttpServletRequest will be created automatically by servlet container and it

contains client requested data.

Day - 30:

Write a servlet which accepts client request and display the client requested data on the browser?

Answer:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class DataServ extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String name=req.getParameter ("persdata_eurn");

 String cname=req.getParameter ("persdata_eurc");

 pw.println ("<center><h3>HELLO..! Mr/Mrs. "+name+"</h3></center>");

 pw.println ("<center><h3>Your COURSE is "+cname+"</h3></center>");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

J2EE (Advanced) JAVA

By Mr. K. V. R Page 62

 }

};

web.xml:

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>DataServ</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/getdata</url-pattern>

 </servlet-mapping>

</web-app>

NOTE:

1. Whenever we are not entering the data in html form that data will be treated as empty

space.

2. Query string represents the data which is passed by client to the servlet through html form.

URI stands for Uniform Resource Indicator which gives the location of servlet where it is

available. URL stands for Uniform Resource Locator which gives at which port number, in

which server a particular JSP or servlet is running. ht represents a context path which can be

either a document root or a war file.

Day - 31:

Write a servlet which accepts product details from html form and stores the product details into

database?

Answer:

Product database:

create table Product

(

 pid number (4),

 pname varchar2 (15),

 price number (6, 2)

);

web.xml:

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>DatabaServ</servlet-class>

 </servlet>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 63

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/getdata</url-pattern>

 </servlet-mapping>

</web-app>

prodata.html:

<html>

 <title>Product Data</title>

 <head><center><h2>Product Information</h2></center></head>

 <body bgcolor="#BDB76B">

 <center>

 <form name="prodata" action="./getdata" method="post">

 <table border="1" bgcolor="#E9967A">

 <tr>

 <th>Enter product id : </th>

 <td><input type="text" name="prodata_pid" value=""></td>

 </tr>

 <tr>

 <th>Enter product name : </th>

 <td><input type="text" name="prodata_name" value=""></td>

 </tr>

 <tr>

 <th>Enter product price : </th>

 <td><input type="text" name="prodata_price" value=""></td>

 </tr>

 <tr>

 <table>

 <tr>

 <td align="center"><input type="submit" name="prodata_insert" value="Insert"></td>

 <td align="center"><input type="reset" name="prodata_reset" value="Clear"></td>

 </tr>

 </table>

 </tr>

 </table>

 </form>

 </center>

 </body>

</html>

DarabaServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.sql.*;

public class DatabaServ extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String pid1=req.getParameter ("prodata_pid");

 String pname=req.getParameter ("prodata_pname");

 String price1=req.getParameter ("prodata_price");

 int pid=Integer.parseInt (pid1);

 float price=Float.parseFloat (price1);

J2EE (Advanced) JAVA

By Mr. K. V. R Page 64

 try

 {

 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());

 Connection con=DriverManager.getConnection ("jdbc:oracle:thin:@localhost:1521:

Hanuman","scott","tiger");

 PreparedStatement ps=con.prepareStatement ("insert into Product values (?,?,?)");

 ps.setInt (1, pid);

 ps.setString (2, pname);

 ps.setFloat (3, price);

 int i=ps.executeUpdate ();

 pw.println ("<h4>"+i+" ROWS INSERTED...");

 con.close ();

 }

 catch (Exception e)

 {

 res.sendError (503, "PROBLEM IN DATABASE...");

 }

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

VALIDATION of a form:

Develop the following html form and validate that from data by using a servlet?

Validations:

1. stno � must contain data and it should contain always int data.

2. sname � must contain data and no special characters are allowed.

3. smarks � must contain data and it should contain float data.

Answer:

Student database:

create table Student

(

 stno number (3),

 stname varchar2 (15),

 stmarks number (5,2)

);

web.xml:

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>ValidationServ</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 65

 <url-pattern>/validation</url-pattern>

 </servlet-mapping>

</web-app>

validpro.html:

<html>

 <title>Validation Project</title>

 <head><center><h2>Student form validation</h2></center></head>

 <body bgcolor="#FFE4C4">

 <center>

 <form name="validpro" action="./validation" method="post">

 <table border="1" bgcolor="A9A9A9">

 <tr>

 <th>Enter student number : </th>

 <td><input type="text" name="validpro_sno" value=""></td>

 </tr>

 <tr>

 <th>Enter student name : </th>

 <td><input type="text" name="validpro_sname" value=""></td>

 </tr>

 <tr>

 <th>Enter student marks : </th>

 <td><input type="text" name="validpro_smarks" value=""></td>

 </tr>

 <tr>

 <table>

 <tr>

 <td><input type="submit" name="validpro_insert" value="Insert"></td>

 <td><input type="reset" name="validpro_clear" value="Clear"></td>

 </tr>

 </table>

 </tr>

 </table>

 </form>

 </center>

 </body>

</html>

ValidationServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.sql.*;

import java.util.*;

public class ValidationServ extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 ArrayList al=new ArrayList ();

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String sno1=req.getParameter ("validpro_sno");

 String sname=req.getParameter ("validpro_sname");

 String smarks1=req.getParameter ("validpro_smarks");

 int sno=0;

J2EE (Advanced) JAVA

By Mr. K. V. R Page 66

 float smarks=0;

 if ((sno1==null)||(sno1.equals ("")))

 {

 al.add ("PROVIDE STUDENT NUMBER...");

 }

 else

 {

 try

 {

 sno=Integer.parseInt ("sno1");

 }

 catch (NumberFormatException nfe)

 {

 al.add ("PROVIDE int DATA IN STUDENT NUMBER...");

 }

 }

 if ((sname==null)||(sname.equals ("")))

 {

 al.add ("PROVIDE STUDENT NAME...");

 }

 if ((smarks1==null)||(smarks1.equals ("")))

 {

 al.add ("PROVIDE STUDENT MARKS...");

 }

 else

 {

 try

 {

 smarks=Float.parseFloat ("smarks1");

 }

 catch (NumberFormatException nfe)

 {

 al.add ("PROVIDE float DATA IN STUDENT MARKS...");

 }

 }

 if (al.size ()!=0)

 {

 pw.println (al);

 }

 else

 {

 try

 {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 Connection con=DriverManager.getConnection ("jdbc:oracle:thin:@localhost:1521:

Hanuman","scott","tiger");

 PreparedStatement ps=con.prepareStatement ("insert into Student values (?,?,?)");

 ps.setInt (1, sno);

 ps.setString (2, sname);

 ps.setFloat (3, smarks);

 int i=ps.executeUpdate ();

 if (i>0)

 {

 pw.println ("RECORD INSERTED...");

 }

 else

J2EE (Advanced) JAVA

By Mr. K. V. R Page 67

 {

 pw.println ("RECORD NOT INSERTED...");

 }

 con.close ();

 }

 catch (Exception e)

 {

 res.sendError (503, "PROBLEM IN DATABASE...");

 }

 }

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

Day - 32:

Servlet Chaining:

 If a client request is processed by group of servlets, then that servlets are known as servlet

chaining or if the group of servlets process a single client request then those servlets are known as

servlet chaining.

 In order to process a client request by many number of servlets then we have two models,

they are forward model and include model.

Forward model:

 In this model when we forward a request to a group of servlets, finally we get the result of

destination servlet as a response but not the result of intermediate servlets.

Include model:

 If a single client request is passed to a servlet and that servlet makes use of other group of

servlets to process a request by including the group of servlets into a single servlet.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 68

 In the above diagram client request goes to servlet s1 and s1 internally includes s2, s3 and s4

servlets and finally result of all these servlets given to the client by a source servlet s1.

NOTE: One servlet can include any number of servlets where as one servlet can forward to only one

servlet at a time.

Steps for DEVELOPING Servlet Chaining:

1. Obtain an object of ServletContext by using in any of the following way:

ServletContext ctx1=getServletContext (); [GenericServlet method]

ServletContext ctx2=config.getServletContext (); [ServletConfig method]

ServletContext ctx3=req.getServletContext (); [HttpServletRequest method]

2. Obtain an object of RequestDispatcher. RequestDispatcher is an interface which is present in

javax.servlet.* package and it is used for forwarding the request and response objects of

source servlet to destination servlet or for including the destination servlet into source

servlet. To obtain an object of RequestDispatcher, the ServletContext contains the following

method:

 RequestDispatcher rd=ctx.getRequestDispatcher (“./s2”);

3. Use forward or include model to send the request and response objects. RequestDispatcher

contains the following methods for forwarding or including the request and response

objects.

For example:

rd.forward (req, res) throws ServletException, IOException

rd.include (req, res) throws ServletException, IOException

Day -33:

Write a java program which illustrates the concept of servlet chaining?

Answer:

web.xml:

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 69

 <servlet-class>Serv1</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>pqr</servlet-name>

 <servlet-class>Serv2</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/s1</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>pqr</servlet-name>

 <url-pattern>/s2</url-pattern>

 </servlet-mapping>

</web-app>

Serv1.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class Serv1 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 pw.println ("<h2>I AM FROM Serv1 BEGINNING</h2>");

 ServletContext ctx=getServletContext ();

 RequestDispatcher rd=ctx.getRequestDispatcher ("/s2");

 rd.include (req, res);

 pw.println ("<h2>I AM FROM Serv1 ENDING</h2>");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

Serv2.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class Serv2 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 pw.println ("<h2>I AM FROM Serv2</h2>");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

J2EE (Advanced) JAVA

By Mr. K. V. R Page 70

What is the difference between getRequestDispatcher (String) and getNamedRequestDispatcher

(String)?

Answer:

 getRequestDispatcher (String) method takes url-pattern or public-url of web.xml where as

getNamedRequestDispatcher (String) method takes name of the servlet or deployer name of

web.xml

Forwarding or Including request and response of one web-app to another web-app:

 In order to achieve forwarding or including the request and response objects of one web

application to another web application, we must ensure that both the web applications must run in

the same servlet container.

1. Obtain ServletContext object for the current web application.

 For example:

 ServletContext cctx=getServletContext ();

2. Obtain SerletContext object of another web application by using the following method which

is present in ServletContext interface.

 For example:

 ServletContext octx=cctx.getContext (“./webapp2”);

3. Obtain RequestDispatcher object by using ServletContext object of another web application.

For example:

RequestDispatcher rd=octx.getRequestDispatcher (“/s2”);

4. Use either include of forward to pass request and response objects of current web

application.

For example:

rd. include (req, res);

rd.forward (req, res);

J2EE (Advanced) JAVA

By Mr. K. V. R Page 71

Day - 34:

Deploying in same servers but from different web applications:

For example:

web.xml (webapp1):

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>Serv1</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/s1</url-pattern>

 </servlet-mapping>

</wep-app>

Serv1.java (webapp1):

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class Serv1 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 pw.println ("<h2>I AM FROM Serv1 BEGINNING OF webapp1</h2>");

 ServletContext cctx=getServletContext ();

 ServletContext octx=cctx.getContext ("/webapp2");

 RequestDispatcher rd=octx.getRequestDispatcher ("/s2");

 rd.include (req, res); // rd.forward (req, res);

 pw.println ("<h2>I AM FROM Serv2 ENDING OF webapp1</h2>");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

web.xml (webapp2):

<web-app>

 <servlet>

 <servlet-name>pqr</servlet-name>

 <servlet-class>Serv2</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>pqr</servlet-name>

 <url-pattern>/s2</url-pattern>

 </servlet-mapping>

</web-app>

Serv2.java (webapp2):

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

J2EE (Advanced) JAVA

By Mr. K. V. R Page 72

public class Serv2 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 pw.println ("<h6>I AM FROM Serv2 OF webapp2</h6>");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

Forwarding request and response objects of one web application to another web application and

both the web applications are running in different servlet containers:

 In order to send the request and response object of one web application which is running in

on servlet container to another web application which is running in another servlet container, we

cannot use forward and include methods.

 To achieve the above we must use a method called sendRedirect (String url) method whose

prototype is

 The above method is present in HttpServletResponse interface, the parameter String url

represents url of another web application which is running in some other servlet container.

The following diagram will illustrate the concept of sendRedirect method:

1. Make a request to a servlet or JSP which is running in a web application of one container

http://localhost:2008/webapp1/s1 context path or document root of one web application.

2. Servlet of web application of Tomcat will redirect the request of client to another web

application of Weblogic by using the following statement:

Res.sendRedirect (“http://localhost:7001/webapp2/s2”); must be written in

Serv1 of webapp1

3. Browser will send the request to another web application of another servlet container.

For example:

http://localhost:7001/webapp2/s2 which is redirected by Serv1 of webapp1.

4. Webapp1 gives the response of Serv2 only but not Serv1 servlet.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 73

Deploying in different servers:

For example:

web.xml (webapp1):

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>Serv1</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/s1</url-pattern>

 </servlet-mapping>

</wep-app>

Serv1.java (webapp1):

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class Serv1 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 pw.println ("<h2>I AM FROM Serv1 OF webapp1</h2>");

 res.sendRedirect (“http://localhost:7001/webapp2/s2”);

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

NOTE: webapp1 must be deployed in Tomcat server.

web.xml (webapp2):

<web-app>

 <servlet>

 <servlet-name>pqr</servlet-name>

 <servlet-class>Serv2</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>pqr</servlet-name>

 <url-pattern>/s2</url-pattern>

 </servlet-mapping>

</web-app>

Serv2.java (webapp2):

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class Serv2 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

J2EE (Advanced) JAVA

By Mr. K. V. R Page 74

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 pw.println ("<h6>I AM FROM Serv2 OF webapp2</h6>");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

NOTE: webapp2 must be deployed in Weblogic server.

Day - 35:

Develop the following application with the help of request dispatcher by using forward and include

methods?

Answer:

web.xml:

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>RecvServ</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>pqr</servlet-name>

 <servlet-class>DispServ</servlet-class>

 </servlet>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 75

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/receive</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>pqr</servlet-name>

 <url-pattern>/display</url-pattern>

 </servlet-mapping>

</web-app>

header.html:

<html>

 <title>Header</title>

 <body bgcolor="#D8BFD8">

 <center><hr>

 AshaKrishna Technologies<hr>

 </center>

 </body>

</html>

login.html:

<html>

 <title>Login Page</title>

 <body bgcolor="#D87093">

 <center>

 <form name="header" action="./receive" method="post">

 <table bgcolor="#AFEEEE" border="1">

 <tr>

 <th>Enter user name : </th>

 <td><input type="text" name="header_euname" value=""></td>

 </tr>

 <tr>

 <th>Enter password : </th>

 <td><input type="password" name="header_epwd" value=""></td>

 </tr>

 <tr>

 <td align="center"><input type="submit" name="header_login" value="Login"></td>

 <td align="center"><input type="reset" name="header_reset" value="Reset"></td>

 </tr>

 </table>

 </form>

 </center>

 </body>

</html>

footer.html:

<html>

 <title>Footer</title>

 <body bgcolor="#D8BFD8">

 <center><hr>

 All copy rights © reserved to BudDinu</hr>

 </center>

 </body>

</html>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 76

RecvServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class RecvServ extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 RequestDispatcher rd=req.getRequestDispatcher ("/display");

 rd.forward (req, res);

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

DispServ.java:
import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class DispServ extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String uname=req.getParameter ("header_euname");

 String pwd=req.getParameter ("header_epwd");

 RequestDispatcher rd1=req.getRequestDispatcher ("header.html");

 rd1.include (req, res);

 pw.println ("

");

 if (uname.equals ("kvr") && pwd.equals ("advanced"))

 {

 pw.println ("<center><h3>VALID CREDENTIALS</h3></center>");

 }

 else

 {

 pw.println ("<center><h3>INVALID CREDENTIALS</h3></center>");

 }

 pw.println ("</br></br></br>");

 RequestDispatcher rd2=req.getRequestDispatcher ("footer.html");

 rd2.include (req, res);

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

NOTE:

1. Whenever we pass a html program as a parameter to getRequestDispatcher method, that

html program will be executed by browser at client side where as whenever we pass a

servlet program or a JSP which will be executed by servlet container or server.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 77

2. RequestDispatcher interface object can also be obtained by using the following method

which is present in HttpServletRequest.

Day - 36:

Attribute scopes:

 Life time or visibility of a variable or attribute is known as scope. In servlet programming

environment we have 3 types of attribute scopes, they are HttpServletRequest scope,

ServletContext scope and Session scope.

HttpServletRequest object scope:

 The request data is available in an object of HttpServletRequest or ServletRequest in the

form of (key, value) form. Since we are using HttpServletRequest object only either in service or

doGet or doPost methods, hence we cannot access this object in other methods of same servlet.

Therefore the scope of HttpServletRequest object is limited to only service or doGet or doPost

methods of a particular servlet.

 If the group of Servlets is involving in processing a single client request then all the Servlets

can use the HttpServletRequest object in their respective service or doGet or doPost methods.

NOTE:

 Whenever we want to send a temporary result or local data to another servlet to be

accessed in service or doGet or doPost methods, it is highly recommended to add the temporary

data to the request object in the form of (key, value).

Methods:

public void setAttribute (String, Object); �1

public Object getAttribute (String); �2

public void removeAttribute (String); �3

public Enumeration getAttributeNames (); �4

 Method-1 is used for inserting or adding the data to HttpServletRequest object in the form

of (key, value) pair. The parameter String represents key and the parameter Object represents value

for the key. If the key value is not present in HttpServletRequest object then the data will be added

as a new entry. If the key value already present in a HttpServletRequest object then key value

remains same and whose value will be modified with the new value.

For example:

req.setAttribute (“v1”, new Integer (10));

req.setAttribute (“v2”, “abc”);

 Method-2 is used for getting or obtaining the value of value by passing value of key. If the

value of key is not found in HttpServletRequest object then its return type (i.e., value of object) is

null.

For example:

Object obj=req.getAttribute (“uname”);

J2EE (Advanced) JAVA

By Mr. K. V. R Page 78

 Method-3 is used for removing or deleting the (key, value) pair from HttpServletRequest

object by passing value of key. If the value of key is not founded in the HttpServletRequest object

then nothing is removed from HttpServletRequest object.

For example:

req.removeAttribute (uname);

 Method-4 is used for obtaining the names of keys which are available in HttpServletRequest

object.

For example:

Enumeration en=req.getAttributeNames ();

While (en.hasMoreElements ())

{

 Object kname=en.nextElement ();

 String key= (String) kname;

 Object val=req.getAttribute (key);

}

Day -37:

Implement the following diagram:

Answer:

deptdetails.html:

<html>

 <title>Retrieve department details</title>

 <body bgcolor="#EEE8AA">

 <center>

 <form name="deptdetails" action="./gdserv" method="post">

 <table border="1" bgcolor="#FFE4E1">

 <tr>

 <th>Enter department number : </th>

 <td><input type="text" name="deptdetails_no" value=""></td>

 </tr>

 <tr>

 <td align="center"><input type="submit" name="deptdetails_details" value="Details"></td>

 <td align="center"><input type="reset" name="deptdetails_reset" value="Reset"></td>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 79

 </tr>

 </table>

 </form>

 </center>

 </body>

</html>

web.xml:

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>GetDataServ</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>pqr</servlet-name>

 <servlet-class>Ddserv</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/gdserv</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>pqr</servlet-name>

 <url-pattern>/ddserv</url-pattern>

 </servlet-mapping>

</web-app>

GetDataServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.sql.*;

public class GetDataServ extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String dno1=req.getParameter ("deptdetails_no");

 int dno=Integer.parseInt (dno1);

 try

 {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 Connection con=DriverManager.getConnection ("jdbc:oracle:thin:@localhost:1521:

Hanuman","scott","tiger");

 Statement st=con.createStatement ();

 ResultSet rs=st.executeQuery ("select * from dept where deptno="+dno);

 rs.next ();

 String vdno=rs.getString (1);

 String vname=rs.getString (2);

 String vloc=rs.getString (3);

 req.setAttribute ("sdno",vdno);

 req.setAttribute ("sdname",vname);

 req.setAttribute ("sdloc",vloc);

 ServletContext ctx=getServletContext ();

J2EE (Advanced) JAVA

By Mr. K. V. R Page 80

 RequestDispatcher rd=ctx.getRequestDispatcher ("/ddserv");

 rd.forward (req, res);

 con.close ();

 }

 catch (Exception e)

 {

 e.printStackTrace ();

 }

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

Ddserv.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class Ddserv extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String rdno= (String) req.getAttribute ("sdno");

 String rdname= (String) req.getAttribute ("sdname");

 String rdloc= (String) req.getAttribute ("sdloc");

 pw.println ("<h3>"+rdno+"</h3>");

 pw.println ("<h3>"+rdname+"</h3>");

 pw.println ("<h3>"+rdloc+"</h3>");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

ServletContext scope:

 An object of ServletContext is used for having a common data for a group of servlets which

belongs to same web application. The data of ServletContext object can be accessed through out all

the methods of the servlet of a particular web.xml

Methods:

 The following methods are used to add local data of a servlet to ServletContext object,

removing the existing data of ServletContext object.

public void setAttribute (String, Object); �1

public Object getAttribute (String); �2

public void removeAttribute (String); �3

public Enumeration getAttributeNames (); �4

J2EE (Advanced) JAVA

By Mr. K. V. R Page 81

Load-on-startup:

 Load-on-startup is basically used for giving equal response for all the clients who are

accessing a particular web application. By default after making request the ServletContext object will

be created by servlet container. Because of this first response takes more amount of time and

further responses will take minimum amount of time. Therefore to avoid the discrepancy in

response time we use a concept of load-on-startup. <load-on-startup> tag will be used as a part of

<servlet> tag since it is specific to the servlet.

 If the priority value is positive for a group of servlets then whose objects will be created

based on ascending order of the priorities. If the priority value is zero then that servlet object will be

created at the end. If the priority value of a servlet is negative then that servlet object will not be

created i.e., neglected.

 When we use load-on-startup as a part of web.xml the container will create an object of a

servlet before first request is made.

web.xml:

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>DdServ</servlet-class>

 <load-on-startup>10</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/ddurl</url-pattern>

 </servlet-mapping>

</web-app>

DdServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class DdServ extends HttpServlet

{

 public DdServ ()

 {

 System.out.println ("SERVLET OBJECT IS CREATED");

 }

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 System.out.println ("I AM FROM doGet ()");

 pw.println ("<h3>I AM FROM doGet ()</h3>");

 }

};

J2EE (Advanced) JAVA

By Mr. K. V. R Page 82

Day - 38:

SESSION MANAGEMENT

 Whenever we make a request that request can be processed by group of Servlets and we get

single response (in case of servlet chaining).

 In general scenario we may make much number of requests to many numbers of Servlets to

get many numbers of responses. By default all these ‘n’ number of requests and responses are

independent to each other. Since, the protocol which we are using is http. http protocol is a

stateless protocol. A stateless protocol is one which never maintains an identity of the client

forever.

 In order to make ‘n’ number of independent request and responses as a consecutive request

and responses we must use the concept of session management or session tracking.

 Session management is a process of maintaining an identity of the client for a period of time

for multiple requests to get multiple responses across the network.

Session management techniques:

 In order to maintain an identity of the client for a period of time, we have four types of

session management techniques; they are Cookies, HttpSession, Hidden form field and URL

rewritten.

COOKIES

 A cookie is the peace of information which contains an identity of the client in the form of

(key, value) pair. Key always represents cookie name and value represents value of the cookie.

 A Cookie is the class developed according to http protocol specification for maintaining for

identity of client and it is present in a package called javax.servlet.http.* package.

Steps for developing Cookie:

1. Create an object of a Cookie.

Cookie ck=new Cookie (String, Object);

For example:

Cookie c1=new Cookie (“fno”,”10”);

Cookie c2=new Cookie (“sno”,”20”);

2. Every cookie must be added as a part of response (add the cookie to response object).

For example:

res.addCookie (c1);

res.addCookie (c2);

 Here, c1 and c2 are Cookie class objects created in step-1 and addCookie () is an

instance method present in HttpServletResponse interface.

3. In order to get the cookies we must use the following method which is present in

HttpServletRequest.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 83

For example:

Cookie ck []=req.getCookies ();

if (ck!=null)

{

 pw.println (“COOKIES ARE PRESENT”);

}

else

{

 pw.println (“COOKIES ARE NOT PRESENT”);

}

Day - 39:

4. In order to obtain cookie name, cookie value and to set its age we have to use the following

methods:

public String getName ();

public Object getValue ();

public void setMaxAge (long sec);

public long getMaxAge ();

 Methods 1 and 2 are used for obtaining name and value of the cookie. Methods 3

and 4 are used for setting and obtaining the age of the cookie.

 The default age of the cookie will be -1 and it will be available only for current

browsing session and a cookie will not be available when the browser is closed, the system is

rebooted. Cookies are prepared by server side program and there will be residing in client

side.

For example:

Cookie c1=new Cookie ();

c1.setMaxAge (24*60*60); // setting the cookie age for 24 hours.

String s=c1.getName ();

Object obj=c1.getValue ();

Write a java program which illustrates the concept of setting and getting cookies by specifying

maximum age, default age and obtaining the cookies which are present at client side?

Answer:

web.xml:

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>SetCookie</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>pqr</servlet-name>

 <servlet-class>ShowCookie</servlet-class>

 </servlet>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 84

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/test1</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>pqr</servlet-name>

 <url-pattern>/test2</url-pattern>

 </servlet-mapping>

</web-app>

SetCookie.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class SetCookie extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 // default maximum age is -1, indicating cookie applies only to current browsing session

 res.setContentType ("text/html");

 Cookie c1=new Cookie ("ANDHRA PRADESH","HYDERABAD");

 Cookie c2=new Cookie ("TAMILNADU","CHENNAI");

 res.addCookie (c1);

 res.addCookie (c2);

 // c3 is valid for 5mins & c4 for 10mins, regardless of user quits browser, reboots computer

 Cookie c3=new Cookie ("KARNATAKA","BANGLORE");

 Cookie c4=new Cookie ("BIHAR","PATNA");

 c3.setMaxAge (300);

 c4.setMaxAge (600);

 res.addCookie (c3);

 res.addCookie (c4);

 System.out.println ("SUCCESSFUL IN SETTING COOKIES");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

ShowCookie.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class ShowCookie extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String title="Active Cookies";

 pw.println ("<html><head><title>"+title+"</title></head></body>");

 pw.println ("<table border=\"1\" align=\"center\">");

 pw.println ("<tr><th>Cookie Name</th><th>Cookie Value</th></tr>");

 Cookie ck []=req.getCookies ();

 if (ck!=null)

J2EE (Advanced) JAVA

By Mr. K. V. R Page 85

 {

 for (int i=0; i<ck.length; i++)

 {

 pw.println ("<tr><td>"+ck [i].getName ()+"</td><td>"+ck [i].getValue ()+"</td></tr>");

 }

 }

 else

 {

 System.out.println ("NO COOKIES PRESENT");

 }

 pw.println ("</table></body></html>");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

Day - 40:

Implement the following screen by using cookies?

Answer:

web.xml:

<web-app>

 <servlet>

 <servlet-name>s1</servlet-name>

 <servlet-class>FirstServ</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>s2</servlet-name>

 <servlet-class>SecondServ</servlet-class>

 </servlet>

 <servlet>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 86

 <servlet-name>s3</servlet-name>

 <servlet-class>FinalServ</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>s1</servlet-name>

 <url-pattern>/test1</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>s2</servlet-name>

 <url-pattern>/test2</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>s3</servlet-name>

 <url-pattern>/test3</url-pattern>

 </servlet-mapping>

</web-app>

personal.html:

<html>

 <title>Complete example</title>

 <body>

 <center>

 <form name="ex" action="./test1" method="post">

 <table border="1">

 <tr>

 <th align="left">Enter ur name : </th>

 <td><input type="text" name="ex_name" value=""></td>

 </tr>

 <tr>

 <th align="left">Enter ur address : </th>

 <td><textarea name="ex_add" value=""></textarea></td>

 </tr>

 <tr>

 <th align="left">Enter ur age : </th>

 <td><input type="text" name="ex_age" value=""></td>

 </tr>

 <tr>

 <table>

 <tr>

 <td align="center"><input type="submit" name="ex_continue" value="Continue"></td>

 </tr>

 </table>

 </tr>

 </table>

 </form>

 </center>

 </body>

</html>

FirstServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class FirstServ extends HttpServlet

{

J2EE (Advanced) JAVA

By Mr. K. V. R Page 87

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String name=req.getParameter ("ex_name");

 String address=req.getParameter ("ex_add");

 String age=req.getParameter ("ex_age");

 Cookie c1=new Cookie ("name",name);

 Cookie c2=new Cookie ("address",address);

 Cookie c3=new Cookie ("age",age);

 res.addCookie (c1);

 res.addCookie (c2);

 res.addCookie (c3);

 pw.println ("<html><title>First Servlet</title><body bgcolor=\"green\"><center>");

 pw.println ("<form name=\"first\" action=\"./test2\" method=\"post\"><table bgcolor=\"lightblue\">");

 pw.println ("<tr><th>Enter ur experience : </th><td><input type=\"text\" name=\"first_exp\"

value=\"\">");

 pw.println ("</td></tr><tr><th>Enter ur skills : </th><td><input type=\"text\" name=\"first_skills\"

value=\"\">");

 pw.println ("</td></tr><table><tr><td align=\"center\"><input type=\"submit\" name=\"first_submit\"

value=\"Continue\">");

 pw.println ("</td></tr></table></table></form></center></body></html>");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

SecondServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class SecondServ extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String exp=req.getParameter ("first_exp");

 String skills=req.getParameter ("first_skills");

 Cookie c4=new Cookie ("exp",exp);

 Cookie c5=new Cookie ("skills",skills);

 res.addCookie (c4);

 res.addCookie (c5);

 pw.println ("<html><title>Second Servlet</title><body bgcolor=\"green\"><center>");

 pw.println ("<form name=\"second\" action=\"./test3\" method=\"post\"><table

bgcolor=\"lightblue\">");

 pw.println ("<tr><th>Enter expected salary : </th><td><input type=\"text\" name=\"second_sal\"

value=\"\">");

 pw.println ("</td></tr><tr><th>Enter preffered location : </th><td><input type=\"text\"

name=\"second_loc\" value=\"\">");

 pw.println ("</td></tr><table><tr><td align=\"center\"><input type=\"submit\"

name=\"second_submit\" value=\"Submit\">");

 pw.println ("</td></tr></table></table></form></center></body></html>");

J2EE (Advanced) JAVA

By Mr. K. V. R Page 88

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

Database table (info):

create table info

(

 name varchar2 (13),

 addr varchar2 (33),

 age number (2),

 exp number (2),

 skills varchar2 (13),

 sal number (7,2),

 loc varchar2 (17)

);

/

FinalServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.sql.*;

import java.util.*;

public class FinalServ extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 ArrayList al=new ArrayList ();

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String sal=req.getParameter ("second_sal");

 float salary=Float.parseFloat (sal);

 String location=req.getParameter ("second_loc");

 Cookie ck []=req.getCookies ();

 for (int i=0; i<ck.length; i++)

 {

 al.add (ck [i].getValue ());

 }

 String name=al.get (0).toString ();

 String address=al.get (1).toString ();

 String age1=al.get (2).toString ();

 int age=Integer.parseInt (age1);

 String exp=al.get (3).toString ();

 int experiance=Integer.parseInt (exp);

 String skills=al.get (4).toString ();

 try

 {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 Connection con=DriverManager.getConnection ("jdbc:oracle:thin:@localhost:1521:

Hanuman","scott","tiger");

 PreparedStatement ps=con.prepareStatement ("insert into info values (?,?,?,?,?,?,?)");

 ps.setString (1, name);

J2EE (Advanced) JAVA

By Mr. K. V. R Page 89

 ps.setString (2, address);

 ps.setInt (3, age);

 ps.setInt (4, experiance);

 ps.setString (5, skills);

 ps.setFloat (6, salary);

 ps.setString (7, location);

 int j=ps.executeUpdate ();

 if (j>0)

 {

 pw.println ("<html><body bgcolor=\"lightblue\"><center><h1>

Successfully ");

 pw.println ("Inserted</h1></center>Home

</body></html>");

 }

 else

 {

 pw.println ("<html><body bgcolor=\"cyan\"><center><h1>Try

Again");

 pw.println ("</h1></center>Home</body>

</html>");

 }

 }

 catch (Exception e)

 {

 pw.println ("<html><body bgcolor=\"cyan\"><center><h1>Try Again");

 pw.println ("</h1></center>Home</body></html>");

 }

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

Day - 41:

Disadvantages of Cookies:

1. When we remove the cookies which are residing in client side by going to tools �

internet options � delete cookies of browser, we cannot maintain identity of the

client.

2. There is a restriction on size of the cookies (i.e., 20 cookies are permitted per web

application).

3. As and when number of cookies which leads to more network traffic flow and there is a

possibility of loosing performance of server side applications.

HTTP SESSION

 HttpSession is a technique of session management which maintains an identity of a client for

a period of time across the network for making ‘n’ number of requests for obtaining ‘n’ number of

responses. During the period of session, all the requests and responses are consecutive.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 90

Day - 42:

Steps for developing HttpSession applications:

1. Obtain an object of javax.servlet.http.HttpSession interface.

 In order to obtain an object of HttpSession we have to use the following two

methods which are present in HttpServletRequest.

For example:

HttpSession hs=req.getSession ();

HttpSession hs=req.getSession (true);

When we use method-ii the boolean value can be either true or false:

Case-1: Session not created and boolean value is true. Session will be created newly.

For example:

HttpSession hs=req.getSession (true);

Case-2: Session not created and boolean value is false. Session will not be created at all.

For example:

HttpSession hs=req.getSession (false);

Case-3: Session already created and boolean value is true. Existing or old session will be

continued with checking.

For example:

HttpSession hs=req.getSession (true);

Case-4: Session already created and boolean value is false. Existing or old session will be

continued without any checking.

For example:

HttpSession hs=req.getSession (false);

2. Put the values into HttpSession object by using the following methods which are present in

HttpSession:

J2EE (Advanced) JAVA

By Mr. K. V. R Page 91

 Here, String represents session variable name known as key and Object represents

session value. In HttpSession object the data is organizing in the form of (key, value) pair.

For example:

hs.putValue (“name”,”kalyan”);

hs.setAttribute (“address”,s2);

3. Get the values from HttpSession object by using the following methods which are present in

HttpSession:

For example:

Object obj1=hs.getAttribute (“name”);

Object obj2=hs.getValue (“address”);

Other methods in HttpSession:

1. public void setMaxInactiveInterval (long sec):

 In most of the popular web sites an identity of the client will be maintained for a

period of 30 minutes. When the time interval between first request and second request i.e.,

if the time delay between one request to another request is 30 minutes then automatically

the server will eliminate the identity of the client.

 In order to set our own session out time or maximum session active time, we use

this method. In this method, we specify the session active time in terms of seconds.

For example:

hs.setMaxInactiveInterval (60*60);

2. public boolean isNew ():

 This method returns true when the session is created newly otherwise it returns

false for old sessions.

For example:

boolean b=hs.isNew ();

3. public void removeAttribute (String):

 This method is used for removing one of the session attribute name along with its

value.

For example:

hs.removeAttribute (“address”);

J2EE (Advanced) JAVA

By Mr. K. V. R Page 92

4. public Enumeration getAttributeNames (): This method is used for obtaining all the session

variable names.

For example:

Enumeration en=hs.getAttributeNames ();

While (en.hasMoreElements ())

{

 Object kname=en.nextElement ();

 String key= (String) kname;

 Object val=req.getAttribute (key);

}

5. public void invalidate ():

 This method is used for invalidate the identity of the client permanently i.e., all the

values of session object will be removed completely.

For example:

hs.invalidate ();

6. public long getLastAccessTime (): This method is used for obtaining last access time.

For example:

long t=hs.getLastAccessTime ();

7. public long getId ():

 This method is used for obtaining session id of a client which is created by servlet

container.

For example:

long sid=hs.getId ();

Day - 43:

Develop the servlets which illustrate the concept of HttpSession? [Refer above figure-1]

Answer:

web.xml:

<web-app>

 <servlet>

 <servlet-name>s1</servlet-name>

 <servlet-class>FirstServ</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>s2</servlet-name>

 <servlet-class>SecondServ</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>s3</servlet-name>

 <servlet-class>FinalServ</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>s1</servlet-name>

 <url-pattern>/test1</url-pattern>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 93

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>s2</servlet-name>

 <url-pattern>/test2</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>s3</servlet-name>

 <url-pattern>/test3</url-pattern>

 </servlet-mapping>

</web-app>

personal.html:

<html>

 <title>Complete example</title>

 <body>

 <center>

 <form name="ex" action="./test1" method="post">

 <table border="1">

 <tr>

 <th align="left">Enter ur name : </th>

 <td><input type="text" name="ex_name" value=""></td>

 </tr>

 <tr>

 <th align="left">Enter ur address : </th>

 <td><textarea name="ex_add" value=""></textarea></td>

 </tr>

 <tr>

 <th align="left">Enter ur age : </th>

 <td><input type="text" name="ex_age" value=""></td>

 </tr>

 <tr>

 <table>

 <tr>

 <td align="center"><input type="submit" name="ex_continue" value="Continue"></td>

 </tr>

 </table>

 </tr>

 </table>

 </form>

 </center>

 </body>

</html>

Database table (info):

create table info

(

 name varchar2 (13),

 addr varchar2 (33),

 age number (2),

 exp number (2),

 skills varchar2 (13),

 sal number (7,2),

 loc varchar2 (17)

);

/

J2EE (Advanced) JAVA

By Mr. K. V. R Page 94

FirstServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class FirstServ extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String name1=req.getParameter ("ex_name");

 String address1=req.getParameter ("ex_add");

 String age1=req.getParameter ("ex_age");

 HttpSession hs=req.getSession (true);

 hs.putValue ("namehs",name1); // we can also use setAttribute

 hs.putValue ("addresshs",address1); // we can also use setAttribute

 hs.putValue ("agehs",age1);

 pw.println ("<html><title>First Servlet</title><body bgcolor=\"green\"><center>");

 pw.println ("<form name=\"first\" action=\"./test2\" method=\"post\"><table bgcolor=\"lightblue\">");

 pw.println ("<tr><th>Enter ur experience : </th><td><input type=\"text\" name=\"first_exp\"

value=\"\">");

 pw.println ("</td></tr><tr><th>Enter ur skills : </th><td><input type=\"text\" name=\"first_skills\"

value=\"\">");

 pw.println ("</td></tr><table><tr><td align=\"center\"><input type=\"submit\" name=\"first_submit\"

value=\"Continue\">");

 pw.println ("</td></tr></table></table></form></center></body></html>");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

SecondServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class SecondServ extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String exp1=req.getParameter ("first_exp");

 String skills1=req.getParameter ("first_skills");

 HttpSession hs=req.getSession (false);

 hs.putValue ("exphs",exp1); // we can also use setAttribute

 hs.putValue ("skillshs",skills1); // we can also use setAttribute

 pw.println ("<html><title>Second Servlet</title><body bgcolor=\"green\"><center>");

 pw.println ("<form name=\"second\" action=\"./test3\" method=\"post\"><table

bgcolor=\"lightblue\">");

 pw.println ("<tr><th>Enter expected salary : </th><td><input type=\"text\" name=\"second_sal\"

value=\"\">");

 pw.println ("</td></tr><tr><th>Enter preffered location : </th><td><input type=\"text\"

name=\"second_loc\" value=\"\">");

J2EE (Advanced) JAVA

By Mr. K. V. R Page 95

 pw.println ("</td></tr><table><tr><td align=\"center\"><input type=\"submit\"

name=\"second_submit\" value=\"Submit\">");

 pw.println ("</td></tr></table></table></form></center></body></html>");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

FinalServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.sql.*;

import java.util.*;

public class FinalServ extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String sal1=req.getParameter ("second_sal");

 float salary=Float.parseFloat (sal1);

 String location=req.getParameter ("second_loc");

 HttpSession hs=req.getSession (false);

 String name=(String) hs.getAttribute ("namehs");

 String address=(String) hs.getAttribute ("addresshs");

 String age1=(String) hs.getAttribute ("agehs");

 int age=Integer.parseInt (age1);

 String exp=(String) hs.getAttribute ("exphs");

 int experiance=Integer.parseInt (exp);

 String skills=(String) hs.getAttribute ("skillshs");

 try

 {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 Connection con=DriverManager.getConnection ("jdbc:oracle:thin:@localhost:1521:

Hanuman","scott","tiger");

 PreparedStatement ps=con.prepareStatement ("insert into info values (?,?,?,?,?,?,?)");

 ps.setString (1, name);

 ps.setString (2, address);

 ps.setInt (3, age);

 ps.setInt (4, experiance);

 ps.setString (5, skills);

 ps.setFloat (6, salary);

 ps.setString (7, location);

 int j=ps.executeUpdate ();

 if (j>0)

 {

 pw.println ("<html><body bgcolor=\"lightblue\"><center><h1>

Successfully ");

 pw.println ("Inserted</h1></center>Home

</body></html>");

J2EE (Advanced) JAVA

By Mr. K. V. R Page 96

 }

 else

 {

 pw.println ("<html><body bgcolor=\"cyan\"><center><h1>Try

Again");

 pw.println ("</h1></center>Home</body>

</html>");

 }

 }

 catch (Exception e)

 {

 pw.println ("<html><body bgcolor=\"cyan\"><center><h1>Try Again");

 pw.println ("</h1></center>Home</body></html>");

 }

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

Advantages of HttpSession:

1. There is no restriction on size of HttpSession object. Since, a single object can hold different

type of values which are related to client identity.

2. Network traffic flow is very less. Since, only session id is exchanging between client and

server.

3. An object of HttpSession neither exists at client side not exists at server.

HIDDEN FLOW FIELDS

 Hidden form fields are also a kind of session management technique which allows us to

maintain an identity of the client for a period of time.

<input type=”hidden” name=”name of the hidden component” value=”value of the hidden component”>

For example:

<input type=”hidden” name=”age” value=”req.getParameter (“age1”)”>

<input type=”hidden” name=”skills” value=”J2EE”>

Day - 44:

JSP (JAVA SERVER PAGES)

 JSP is the technology and whose specification is implemented by server vendors. JSP is an

alternative technology for servlets. Since, servlets having the following limitations:

Phases in JSP:

Whenever we write in a JSP page, that JSP page will undergo the following phases:

1. Translation phase: It is one which converts .jsp program into .java program internally by the

container. Once the translation phase is completed the entire JSP program is available into a

pure java program.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 97

2. Compilation phase: It is one which converts .java program into .class file provided no errors

found in .java program by the container. If errors are found by the container in .java

program those errors will be listed in the browser.

3. Execution or Running phase: It is the process of executing .class file by the container.

Limitations of servlets

1. In order to develop any servlet they

must know java language.

2. Servlets provides uncomforting. Since,

in a single servlet we are writing

presentation logic and application or

business logic.

3. Maintenance and deployment

problems are more (servlets allows

only static changes).

4. Important: Servlets does not provide

automatic page compilation i.e., every

servlet program must be compiled

explicitly.

5. Servlets does not provide any custom

tag (user defined tag) development.

6. Servlets does not provide any implicit

objects.

JSP provides

1. To write any JSP program java language is not

necessary i.e., a non-java programmer can

write the JSP page effectively.

2. In JSP there is a separation between

presentation logic and application or business

logic.

3. JSP page can minimize or reduce maintenance

and deployment problems. Since, it allows

dynamic changes.

4. JSP provides automatic page compilation

(every JSP program internally translated as a

java program by the container which is

nothing but servlet).

5. JSP provides the features to develop custom

tags.

6. Every JSP page contains ‘n’ number of implicit

objects such as out, session, exception, etc.

 When we make very first request to a JSP page, translation phase, compilation phase and

execution phase will be taken place. From second request to further sub sequent requests only

execution phase taking place provided when we are not modifying JSP page.

JSP architecture:

J2EE (Advanced) JAVA

By Mr. K. V. R Page 98

Day - 45:

Life cycle methods of JSP:

 Since, JSP is the server side dynamic technology and it extends the functionality of web or

application server, it contains the following life cycle methods:

public void jspInit ();

public void jspService (ServletRequest, ServletResponse);

public void jspDestroy ();

 The above three life cycle methods are exactly similar to life cycle methods of servlet.

TAGS in JSP

 Writing a program in JSP is nothing but making use of various tags which are available in JSP.

In JSP we have three categories of tags; they are scripting elements, directives and standard

actions.

SCRIPTING ELEMENTS:

 Scripting elements are basically used to develop preliminary programming in JSP such as,

declaration of variables, expressions and writing the java code. Scripting elements are divided into

three types; they are declaration tag, expression tag and scriplet.

1. Declaration tag:

 Whenever we use any variables as a part of JSP we have to use those variables in the

form of declaration tag i.e., declaration tag is used for declaring the variables in JSP page.

Syntax:

<%! Variable declaration or method definition %>

 When we declare any variable as a part of declaration tag those variables will be

available as data members in the servlet and they can be accessed through out the entire

servlet.

 When we use any methods definition as a part of declaration tag they will be

available as member methods in servlet and it will be called automatically by the servlet

container as a part of service method.

For example-1:

<%! int a=10, b=30, c; %>

For example-2:

<%!

 int count ()

 {

 return (a+b);

 }

%>

2. Expression tag:

Expression tags are used for writing the java valid expressions as a part of JSP page.

Syntax:

<%= java valid expression %>

 Whatever the expression we write as a part of expression tags that will be given as a

response to client by the servlet container. All the expression we write in expression tag they

J2EE (Advanced) JAVA

By Mr. K. V. R Page 99

will be placed automatically in out.println () method and this method is available as a

part of service method.

NOTE: Expressions in the expression tag should not be terminated by semi-colon (;) .

For example-1:

<%! int a=10, b=20 %>

<%= a+b %>

 The equivalent servlet code for the above expression tag is out.println (a+b);

out is implicit object of JSPWriter class.

For example-2:

<%= new java.util.Date () %> � out.println (new java.util.Date ());

3. Scriplet tag:

 Scriplets are basically used to write a pure java code. Whatever the java code we

write as a part of scriplet, that code will be available as a part of service () method of

servlet.

Syntax:

<% pure java code %>

Write a scriplet for generating current system date?

Answer:

web.xml:

<web-apps>

</web-apps>

DateTime.java:

<html>

 <title>Current Date & Time</title>

 <head><h4>Current date & time</h4></head>

 <body>

 <%

 Date d=new Date ();

 String s=d.toString ();

 out.println (s);

 %>

 </body>

</html>

[or]

<html>

 <title>Current Date & Time</title>

 <head><h4>Current date & time</h4></head>

 <body>

 <%=new Date ()%>

 </body>

</html>

Write a JSP page to print 1 to 10 numbers? [For web.xml refer page no: 102]

Answer:

One2TenNumbers.jsp:

<html>

 <title>Print Numbers 1-10</title>

 <head>Numbers 1-10</head>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 100

 <body>

 <%

 for (int i=1; i<=10; i++)

 {

 out.println (i);

 }

 %>

 </body>

</html>

In order to execute any JSP program one must follow the following directory structure:

Write JSP program to print “Hello JSP world to KALYAN”? [For web.xml refer page no: 102]

Answer:

HelloJSP.jsp:

<html>

 <title>Fisrt Trail</title>

 <head>Fresher to JSP</head>

 <body>

 <h3>Hello JSP world to KALYAN</h3>

 </body>

</html>

NOTE:

 Whenever we deploy a JSP application in webapps folder of Tomcat we get an appropriate

equivalent servlet for the corresponding JSP file. For example, when we deploy first.jsp through a

document root first in webapps folder of tomcat we get first_jsp.java (which is nothing but a servlet)

and first_jsp.class by Tomcat server.

The location of servlet and .class file is as follows:

Write a JSP page which will display current data and time? [For web.xml refer page no: 102]

Answer:

DateTime.jsp:

<html>

 <title>Current Date & Time</title>

 <head>Date & Time without using out.println</head>

 <body>

 <%

J2EE (Advanced) JAVA

By Mr. K. V. R Page 101

 java.util.Date d=new java.util.Date ();

 %>

 <h4>Current date & time</h4>

 <h3><%= d %></h3>

 </body>

</html>

Write a JSP page which will display number of times a request is made [write a JSP for hit counter]?

[For web.xml refer page no: 102]

Answer:

ReloadPageCount.jsp:

<html>

 <title>Number of Reloads</title>

 <head>Number of visitings to a browser</head>

 <body>

 <%! int ctr=0; %>

 <%!

 int count ()

 {

 return (++ctr);

 }

 %>

 <h3><%= count () %></h3>

 </body>

</html>

NOTE:

 Within servlet we use to write html code to generate presentation logic whereas in JSP

environment within html program we are making use of JSP tags.

Write a JSP page which will retrieve the data from database? [For web.xml refer page no: 102]

Answer:

<%@ page import="java.sql.*, java.io.*" %>

<html>

 <title>Data From Database</title>

 <head>Retrieve data from Datebase</head>

 <body>

 <%!

 Connection con=null;

 Statement st=null;

 public void jspInit ()

 {

 try

 {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 con=DriverManager.getConnection ("jdbc:oracle:thin:@localhost:1521:Hanuman","scott",

"tiger");

 st=con.createStatement ();

 }

 catch (Exception e)

 {

 out.println (e);

 }

 }

J2EE (Advanced) JAVA

By Mr. K. V. R Page 102

 %>

 <%!

 try

 {

 ResultSet rs=st.executeQuery ("select * from employee");

 while (rs.next ())

 {

 out.println ("<h3>"+rs.getString (1)+" "+rs.getString (2)+"</h3>")

 }

 }

 catch (Exception e)

 {

 out.println (e);

 }

 %>

 </body>

</html>

IMPLICIT OBJECTS

 Implicit objects are those which will be available to each and every JSP page by default. In

JSP we have the following implicit objects.

Implicit object

1. out

2. request

3. response

4. application

5. config

6. pageContext

7. page

8. session

9. exception

Creator or Instantiated by

1. JSPWriter extends PrintWriter

2. HttpServletRequest

3. HttpServletResponse

4. ServletContext

5. ServletConfig

6. PageContext

7. Object (core java example is this)

8. HttpSession

9. Throwable

Day - 46:

DIRECTIVES:

 Directives are basically used to configure the code that is generated by container in a

servlet. As a part of JSP we have three types of directives; they are page directives, include

directives and taglib directives.

1. Page directives:

 Page directives are basically used for supplying compile time information to the

container for generating a servlet. The page directive will take the data in the form of (key,

value) pair.

<%@

 page attribute_name1=attribute_value1,

 attribute_name2=attribute_value2,

 ……………………………………………………….,

 Attribute_nameN=attribute_valueN

%>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 103

• Whenever we use page directive as a part of JSP program that statement must be

the first statement.

• The scope of page directive is applicable to current JSP page only.

The following table gives the page directive attribute name and page directive attribute value:

Attribute name Attribute value

1. import 1. This attribute is used for importing either pre-defined or user-

defined packages. The default value is java.lang.*

 For example: <%@ page import=”java.sql.*, java.io.*”
%>

2. contentType 2. This attribute is used for setting the MIME type (plain/text,

img/jpeg, img/gif, audio/wave, etc.). The default value is

text/html.

For example: <%@ page contentType=”img/jpeg” %>

3. language 3.6 This attribute represents by default java i.e., in order to

represent any business logic a JSP program is making use of java

language. The attribute language can support any of the other

programming languages for developing a business logic at server

side.

For example: <%@ page language=”java” %>

4.6 isThreadSafe 4. This attribute represents by default true which represents one

server side resource can be accessed by many number of clients

(each client is treated as one thread). At a time if we make the

server side resource to be accessed by a single client then the

value of isThreadSafe is false.

For example: <%@ page isThreadSafe=”false” %>

5. isErrorPage

6. errorPage

5.6 When we write ‘n’ number of JSP pages, there is a possibility of

occurring exceptions in each and every JSP page. It is not

recommended for the JSP programmer to write try and catch

blocks in each and every JSP page. It is always recommended to

handle all the exceptions in a single JSP page.

isErrorPage is an attribute whose default value is true which

indicates exceptions to be processed in the same JSP page which

is not recommended. If isErrorPage is false then exceptions are

not processed as a part of current JSP page and the exceptions

are processed in some other JSP page which will be specified

through an attribute called errorPage.

For example: <%@ page isErrorPage=”false” errorPage=”err.jsp”

%>

err.jsp:
<%= exception %>

[or]
<%= exception.getMessage () %>

Day - 47:

7. autoflush

8. buffer

7. Whenever the server side program want to send large amount of

data to a client, it is recommended to make autoflush value as

false and we must specify the size of the buffer in terms of kb.

The default value of autoflush is true which represents the

server side program gives the response back to the client each

J2EE (Advanced) JAVA

By Mr. K. V. R Page 104

and every time. Since, the buffer size is zero.

For example:
<%@ page autoflush=”false” buffer=”12kb” %>

<%@ page autoflush=”true” %> [by default]

9. session 9. When we want to make ‘n’ number of independent requests as

consecutive requests one must use the concept of session. In

order to maintain the session we must give the value of session

attribute has true in each and every JSP page (recommended).

The default value of session is true which represents the

session is applicable to current JSP page.

For example:

<%@ page session=”true” %> �session will be created or old

session will be continued.

10. info 10. Using this attribute it is recommended for the JSP programmer to

specify functionality about a JSP page, on what date it is created

and author.

In order to get information (info) of a JSP page we must use

the following method:

Write a JSP page which illustrates the concept of isErrorPage and errorPage?

Answer:

web.xml:

<web-app>

</web-app>

Exception.jsp:

<%@ page isErrorPage="false" errorPage="ErrorPage.jsp" %>

<html>

 <body>

 <%= 30/0 %>

 </body>

</html>

ErrorPage.jsp:

<%@ page isErrorPage="true" %>

<html>

 <body>

 Exception is <%= exception %> generated...

 Exception message is <%= exception.getMessage () %>

 <%@ include file="copyright.html" %>

 </body>

</html>

Copyright.html:

<html>

All copy rights are reserved for kvr.com

</html>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 105

Develop JSP pages which will participate in session?

Answer:

web.xml:

<web-app>

</web-app>

First.jsp:

<%@ page session="true" %>

<html>

 <body>

 <form name="first" action="Second.jsp">

 Enter your name : <input type="text" name="first_name">

 <input type="submit" value="Send">

 </form>

 </body>

</html>

Second.jsp:

<%@ page session="true" %>

<html>

 <body>

 <% String str=request.getParameter ("first_name"); %>

 Your name is <h4><%= str %></h4>

 <% session.setAttribute ("name",str); %>

 <form action="Third.jsp">

 Send the request to next page

 <input type="submit" value="Send">

 </form>

 </body>

</html>

Third.jsp:

<%@ page session="true" %>

<html>

 <body>

 Value in third page from session objects is

 <h4><%= session.getAttribute ("name") %></h4>

 </body>

</html>

Day - 48:

2. Include directives:

 Include is the directive to include the server side resource. The server side resource

can be either an html file or JSP or a servlet.

 If we include html file, it will be executed by browser when the response is rendering

to the client. When we include a JSP or a servlet, it will be executed by container.

Syntax:

<% include file=”file name to be included” %>

For example:

<% include file=”copyright.html” %>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 106

3. Taglib directives (Custom Tags):

 The tags which are provided in JSP may not be solving the total problems of JSP

programmer. In some situations, there is a possibility of repeating the same code many

times by various JSP programmers and it leads to poor performance of a JSP application. In

order to avoid the repetition of the code, it is highly desirable to develop the code only one

time in the form of tags and use these tags by other JSP programmers. These tags are known

as custom tags.

Advantages of custom tags:

1. Repetition of code (application logic) is reduced. Hence, we can achieve high

performance and less storage cost.

2. We can achieve the slogan of WORA.

3. Custom tags provide simplicity for the JSP programmer in developing the application

logic.

Steps for developing custom tags:

1. Decide which tag to be used along with prefix or short name, tag name and attribute

names if required.

2. While we are choosing prefix it should not belongs to JSP, javax, javaw and java.

3. After developing a custom tag one must specify the details about tag in a predefined

file called tld (Tag Library Descriptor) file.

4. tld file contains declarative details about custom tags.

5. After developing tld file keep it into either WEB-INF folder directly or keep it into a

separate folder called tlds folder and it in turns present into WEB-INF.

6. Whenever we make a request to a JSP page where we are using custom tag will give

location of tld file.

7. The tld file gives information about tag handler class (JavaBeans class) in which we

develop the arithmetic logic or business logic for the custom tag.

Syntax for specifying the location of tld files:

<% taglib uri=”location of tld file”

 prefix=”prefix or short name of custom tag” %>

For example:

<% taglib uri=”/WEB-INF/tlds/x.tld” prefix=”database” %>

 Here, taglib is a directive used for given information regarding tld file and prefix or

short name of custom tag.

 Entries in tld file:

 Every tld file gives declarative details about custom tags. The following structure

gives information regarding prefix name, tag name, tag handler class name, attribute names,

etc.

x.tld:

<taglib>

 <tlibversion>1.0</tlibversion>

 <jspversion>1.1</jspversion>

 <shortname>database</shortname>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 107

 <tag>

 <name>display</name>

 <tagclass>MyPack.x</tagclass>

 <bodycontent>empty</bodycontent>

 <attribute>

 <name>username</name>

 <required>true</required>

 <rtexprvalue>false</rtexprvalue>

 </attribute>

 </tag>

</taglib>

Day - 49:

 If a tag contains any attributes we must used <attribute/> in tld file. <attribute/> tag

contains the following entries:

Syntax:

<attribute>

 <name>…….</name> � represents name of the attribute

 <required>…….</required> � represents either true or false

 <rtexprvalue>…….</rtexprvalue> � represents required text expression value

</attribute>

 When we use true, the required attribute should name. This attribute should be used

compulsorily. When it is false, it is optional to use.

 If we pass the data at runtime to the rtexprvalue attribute, this attribute must be true

otherwise it is false.

Steps for developing tag handler class:

 A tag handler class is basically a JavaBeans class, it should contain set of set methods and set

of get methods.

1. All the attributes of custom tag must be used as properties or data members in tag handler

class in the same order in which they appear.

2. Every tag handler class must extend a predefined class called javax.servlet.jsp.tagext.

TagSupport

3. TagSupport class contains the following two life cycle methods (which are automatically

called by the JSP container) and they must be overridden in tag handler class.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 108

The legal values which are returned by doStartTag are:

 doStartTag () method will be called by JSP container when starting of custom tag taken place

<x:hello/>. SKIP_BODY is the constant which will be returned by doStartTag () method when we

don’t want to execute body of the custom tag. EVAL_BODY_INCLUDE is the constant which will be

returned by doStartTag () method when we want to evaluate body of the custom tag.

The legal values which are returned by doEndTag () are:

 doEndTag () method will be called by JSP container when the closing tag of custom tag taken

place <x:hello/>. EVAL_PAGE is the constant to be returned by doEndTag () method when we

want to execute rest of the JSP page. SKIP_PAGE is the constant to be returned by doEndTag ()

method when we don’t want to execute rest of the JSP page.

Day - 50:

Develop a JSP page which illustrate the concept of TagSupport class, mean while get connection with

database using custom tag?

Answer:

web.xml:

<web-app>

</web-app>

JdbcTag.jsp:

<html>

 <body>

 <%@ taglib prefix="table" uri="/WEB-INF/tlds/JdbcTag.tld" %>

 <center>

 <table:show username="scott" password="tiger" dsn="oradsn" table="product">

 </center>

 </body>

</html>

JdbcTag.java:

package tagpack;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.sql.*;

import java.io.*;

J2EE (Advanced) JAVA

By Mr. K. V. R Page 109

public class JdbcTag extends TagSupport

{

 String table, username, password, dsn;

 public void setUsername (String username)

 {

 this.username=username;

 }

 public void setPassword (String password)

 {

 this.password=password;

 }

 public void setDsn (String dsn)

 {

 this.dsn=dsn;

 }

 public void setTable (String table)

 {

 this.table=table;

 }

 Connection con=null;

 PreparedStatement ps=null;

 ResultSet rs=null;

 ResultSetMetaData rsmd=null;

 public int doStartTag () throws JspException

 {

 try

 {

 Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

 con=DriverManager.getConnection ("jdbc:odbc:"+dsn,username,password);

 ps=con.prepareStatement ("select * from "+table);

 return EVAL_BODY_INCLUDE;

 }

 catch (Exception e)

 {

 throw new JspException (e.getMessage ());

 }

 }

 public int doEndTag () throws JspException

 {

 int i=1;

 try

 {

 rs=ps.executeQuery ();

 rsmd=rs.getMetaData ();

 pageContext.getOut ().print ("<table border=1><tr>");

 for (i=1; i<=rsmd.getColumnCount (); i++)

 {

 pageContext.getOut ().print ("<th>"+rsmd.getColumnName (i)+"</th>");

 }

 pageContext.getOut ().print ("</tr>");

 while (rs.next ())

 {

 pageContext.getOut ().print ("<tr>");

 for (i=1; i<=rsmd.getColumnCount (); i++)

 {

 pageContext.getOut ().print ("<td>"+rs.getString (i)+"</td>");

J2EE (Advanced) JAVA

By Mr. K. V. R Page 110

 }

 pageContext.getOut ().print ("</tr>");

 }

 pageContext.getOut ().print ("</table>");

 return EVAL_PAGE;

 }

 catch (Exception e)

 {

 throw new JspException (e.getMessage ());

 }

 }

};

JdbcTag.tld:

<taglib>

 <shortname>table</shortname>

 <tag>

 <name>show</name>

 <tagclass>tagpack.JdbcTag</tagclass>

 <bodycontent>empty</bodycontent>

 <attribute>

 <name>username</name>

 <required>true</required>

 <rtexprvalue>false</rtexprvalue>

 </attribute>

 <attribute>

 <name>password</name>

 <required>true</required>

 <rtexprvalue>false</rtexprvalue>

 </attribute>

 <attribute>

 <name>dsn</name>

 <required>true</required>

 <rtexprvalue>false</rtexprvalue>

 </attribute>

 <attribute>

 <name>table</name>

 <required>true</required>

 <rtexprvalue>false</rtexprvalue>

 </attribute>

 </tag>

</taglib>

NOTE: We should write the attributes same in the order of jsp program we used.

Day -51:

Develop a JSP page which illustrate the concept of TagSupport class, mean while print the typed

name on the browser using custom tag?

Answer:

web.xml:

<web-app>

</web-app>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 111

HelloTag.jsp:

<%@

 taglib uri="/WEB-INF/tlds/hello.tld" prefix="test"

%>

<html>

 <h3>This is example on custom tag</h3>

 <h4><test:hello name="Hyderabad"/></h4>

</html>

HelloTag.java (Tag Handler Class):

package t1;

import java.io.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

public class HelloTag extends TagSupport

{

 private String name;

 public void setName (String name)

 {

 this.name=name;

 }

 public int doEndTag () throws JspException

 {

 try

 {

 pageContext.getOut ().print ("Hello..! "+name);

 }

 catch (Exception e)

 {

 throw new JspException (e.getMessage ());

 }

 return EVAL_PAGE;

 }

};

Hello.tld:

<taglib>

 <shortname>test</shortname>

 <tag>

 <name>hello</name>

 <tagclass>t1.HelloTag</tagclass>

 <bodycontent>empty</bodycontent>

 <attribute>

 <name>name</name>

 <required>true</required>

 <rtexprvalue>false</rtexprvalue>

 </attribute>

 </tag>

</taglib>

NOTE:

 pageContext is an object of javax.servlet.jsp.PageContext interface and it will be created

automatically by JSP container. pageContext object is pre-declared in TagSupport class and this

object will be available to each and every sub-class of TagSupport class.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 112

STANDARD ACTIONS:

 These are basically used to pass runtime information to the container. As a part of JSP we

have the following standard actions; they are <JSP:forward/>, <JSP:include/>,

<JSP:param/>, <JSP:useBean/>, <JSP:setProperty/> and <JSP:getProperty>.

1. <JSP:forward/>:

 When we want to forward a request and response to the destination JSP page from

the source JSP we must use <JSP:forward>.

Syntax:

Without body:

<JSP:forward page=”relative or absolute path of JSP page”/>

With body:

<JSP:forward page=” relative or absolute path of JSP page”>

 <JSP:param name=”param name1” value=”param value1”/>

 <JSP:param name=”param name2” value=”param value2”/>

</JSP:forward>

For example:

<JSP:forward page=”y.jsp”>

 <JSP:param name=”v1” value=”10”/>

 <JSP:param name=”v2” value=”20”/>

</JSP:forward>

 When we use this tag we get the response of destination JSP page only but not

source JSP page.

2. <JSP:include/>:

 This tag is used for processing a client request by a source JSP page by including

other JSP pages and static resources like html’s. One source JSP can include ‘n’ number of

server side resources and finally we get the response of source JSP only.

Syntax:

Without body:

<JSP:include page=”relative or absolute path of JSP page”/>

With body:

<JSP:include page=” relative or absolute path of JSP page”>

 <JSP:param name=”param name1” value=”param value1”/>

 <JSP:param name=”param name2” value=”param value2”/>

</JSP:include>

For example-1:

<JSP:include page=”y.jsp”>

 <JSP:param name=”v1” value=”10”/>

 <JSP:param name=”v2” value=”20”/>

</JSP:include>

For example-2:

<JSP:include page=”z.jsp”>

 <JSP:param name=”v3” value=”30”/>

 <JSP:param name=”v4” value=”40”/>

</JSP:include>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 113

3. <JSP:param/>:

 This tag is used for passing the local data of one JSP page to another JSP page in the

form of (key, value) pair.

Syntax:

<JSP:param name=”name of the parameter” value=”value of the

parameter”/>

 Here, name represents name of the parameter or attribute and it must be unique

value represents value of the parameter and should be always string. <JSP:param/> tag

should be used in connection with either <JSP:forward/> or <JSP:include/>.

For example-1:

<JSP:forward page=”y.jsp”>

 <JSP:param name=”v1” value=”10”/>

 <JSP:param name=”v2” value=”20”/>

</JSP:forward>

For example-2:

<JSP:include page=”y.jsp”>

 <JSP:param name=”v1” value=”10”/>

 <JSP:param name=”v2” value=”20”/>

</JSP:include>

For example-2:

<JSP:include page=”z.jsp”>

 <JSP:param name=”v3” value=”30”/>

 <JSP:param name=”v4” value=”40”/>

</JSP:include>

Day - 52:

Write a JSP page which illustrates the concept of <JSP:forward/> and <JSP:include/>?

Answer:

web.xml:

<web-app>

</web-app>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 114

Login.html:

<html>

 <head><center><h3>Login Page</h3></center></head>

 <body>

 <center>

 <h4>Forward/Include test</h4>

 <form name="login" action="Login.jsp" method="post">

 <p>Enter username : <input type="text" name="login_uname" value="">

 Enter password : <input type="password" name="login_pwd" value="">

 <input type="submit" value="Login">

 </form>

 </center>

 </body>

</html>

Login.jsp:

<% String s1=request.getParameter ("login_uname");

 String s2=request.getParameter ("login_pwd");

 if (s1.equals ("kalpana") && s2.equals ("test"))

 { %>

 <JSP:forward page="Success.jsp"/>

<% }

 else

 { %>

 <h5>Login failed</h5>

 <JSP:include page="Login.html"/>

<% } %>

Success.jsp:

<h5>Login Successful</h5>

Welcome to :

<h4><%= request.getParameter ("login_uname") %></h4>

Develop the following form?

J2EE (Advanced) JAVA

By Mr. K. V. R Page 115

Answer:

Student table:

create table student

(

 stno number (3),

 stname varchar2 (15),

 college varchar2 (20),

 marks number (5,2),

 dob date

);

/

web.xml:

<web-app>

</web-app>

login.html:

<html>

 <body>

 <center>

 <form name="login" action="security.jsp" method="post">

 <table>

 <tr>

 <th align="left">Enter username : </th>

 <td><input type="text" name="login_uname" value=""></td>

 </tr>

 <tr>

 <th align="left">Enter password : </th>

 <td><input type="password" name="login_pwd" value=""></td>

 </tr>

 </table>

 <input type="submit" value="Login">

 <input type="reset" value="Clear">

 </form>

 </center>

 </body>

</html>

security.jsp:

<%@ page session="true" %>

<html>

<% String s1=request.getParameter ("login_uname");

 String s2=request.getParameter ("login_pwd");

 if (s1.equals ("student") && s2.equals ("test"))

 { %>

 <JSP:forward page="first.jsp"/>

<% }

 else

 { %>

 <h4>Login Failed</h4>

 <JSP:include page="login.html"/>

<% } %>

</html>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 116

first.jsp:

<%@ page session="true" %>

<html>

 <body>

 <center>

 <form name="first" action="second.jsp" method="post">

 <table>

 <tr>

 <th align="left">Enter number : </th>

 <td><input type="text" name="first_stno" value=""></td>

 </tr>

 <tr>

 <th align="left">Enter name : </th>

 <td><input type="text" name="first_stname" value=""></td>

 </tr>

 </table>

 <input type="submit" value="Send">

 <input type="reset" value="Clear">

 </form>

 </center>

 </body>

</html>

second.jsp:

<%@ page session="true" %>

<html>

 <body>

 <center>

 <form name="second" action="third.jsp" method="post">

 <table>

 <tr>

 <th align="left">Enter college name : </th>

 <td><input type="text" name="second_cname" value=""></td>

 </tr>

 <tr>

 <th align="left">Enter marks : </th>

 <td><input type="text" name="second_marks" value=""></td>

 </tr>

 <tr>

 <th align="left">Enter date of birth : </th>

 <td><input type="text" name="second_dob" value=""></td>

 </tr>

 </table>

 <input type="submit" value="Send">

 <input type="reset" value="Clear">

 </form>

 </center>

 </body>

</html>

third.jsp:

<%@ page session="true" %>

<%@ page import="java.sql.*, java.io.*" %>

<html>

<%! Connection con=null;

J2EE (Advanced) JAVA

By Mr. K. V. R Page 117

 PreparedStatement ps=null;

 public void jspInit ()

 {

 try

 {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 con=DriverManager.getConnection ("jdbc:oracle:thin:@localhost:1521:Hanuman",

"scott","tiger");

 ps=con.prepareStatement ("insert into student values (?,?,?,?,?)");

 }

 catch (Exception e)

 {

 out.println (e);

 }

 } %>

<% String stno=request.getParameter ("first_stno");

 String name=request.getParameter ("first_stname");

 String college=request.getParameter ("second_cname");

 String marks1=request.getParameter ("second_marks");

 String dob1=request.getParameter ("second_dob");

 int number=Integer.parseInt (stno);

 float marks=Float.parseFloat (marks1);

 Date dob=Date.parseDate (dob1);

 %>

<%! try

 {

 ps.setInt (1,number);

 ps.setString (2, name);

 ps.setString (3, college);

 ps.setFloat (4, marks);

 ps.setDate (5, dob);

 int i=ps.executeUpdate ();

 if (i>0)

 { %>

 <html>

 <body bgcolor="lightblue">

 <center>

 <h3>Inserted Successfully</h3>

 </center>

 One more

 </body>

 </html>

<% }

 else

 { %>

 <html>

 <body bgcolor="lightblue">

 <center>

 <h3>Try again</h3>

 </center>

 Home

 </body>

 </html>

<% }

 }

 catch (exception e)

J2EE (Advanced) JAVA

By Mr. K. V. R Page 118

 {

 out.println (e);

 } %>

</html>

JavaBeans in JSP

 A JavaBeans class is a software reusable component. Every JavaBeans class must belong to a

package. Since, it is reusable. Every JavaBeans class modifier must be public. Every JavaBeans class

must contain set of data members (known as properties).

 For each and every data member of JavaBeans class we must have set of set methods whose

general representation is:

public void setXxx (datatype FormalVariableName)

{

 ……………..;

 ……………..;

 ……………..;

}

 For each and every data member of JavaBeans class we must have set of get methods whose

general representation is:

public datatype getXxx ()

{

 ……………..;

 ……………..;

 ……………..;

}

 The set of set methods are used for setting the values to JavaBeans class object whereas set

of get methods are used for getting the values from JavaBeans class object.

Properties or characteristics of JavaBeans:

Every JavaBeans class contains simple property, boolean property and indexed properties.

• A simple property is one in which a method takes and returns elementary or single value

(set of set and get methods are known as simple properties of a JavaBeans class.)

• A boolean property is one in which a method takes or return boolean value.

• An indexed property is one in which a method takes or return array of values.

Develop a JavaBeans class which will check whether the username and password correct or not?

Answer:

Test.java:

package abc;

public class Test

{

 String uname;

 String pwd;

 public void setUname (String uname)

 {

 this.uname=uname;

 }

 public void setPwd (String pwd)

J2EE (Advanced) JAVA

By Mr. K. V. R Page 119

 {

 this.pwd=pwd;

 }

 public String getUname ()

 {

 return (uname);

 }

 public String getPwd ()

 {

 return (pwd);

 }

 public boolean validate ()

 {

 if (uname.equals ("kalpana") && pwd.equals ("test"))

 {

 return (true);

 }

 else

 {

 return (false);

 }

 }

};

Day - 53:

NOTE: It is highly recommended to use a JSP page with scriptless.

 Using a JavaBean class into JSP page the following tags are used to use a JavaBean class as a

part of JSP:

4. <JSP:useBean/>: This tag is used for creating an object of JavaBeans class as a part of

JSP page.

Syntax:

<JSP:useBean id=”object name of a JavaBeans class”

 class=”fully qualified name of JavaBeans class”

 scope=”scope attribute”

 type=”name of base interface or class” />

• Here, JSP represents prefix or short name of useBean tag.

• useBean represents a tag for representing details about JavaBeans class.

• id and name are the mandatory attributes of useBean tag.

• id represents object name of JavaBeans class.

• name represents fully qualified name of JavaBeans class.

• scope represents the visibility or accessibility of a JavaBeans class.

The scope attribute represents any one of the following:

• page - represents a JavaBeans class object can be accessed in current JSP page only.

It cannot be accessed in another JSP pages. By default the scope is page.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 120

• request - represents a JavaBeans class object can be accessed in those JSP pages

which are participating in processing a single request.

• session - represents a JavaBeans class object can be accessed in all the JSP pages

which are participating in a session and it is not possible to access in those JSP pages

which are not participating in session.

• application - represents a JavaBeans class object can be accessed in all the JSP pages

which belongs to the same web application but it is not possible to access in those

JSP pages which are belongs to other web applications.

The type attribute represents specification of base interface or class name of a JavaBeans

class.

For example:

<JSP:useBean id=”eo”

 class=”ep.Emp”

 scope=”session”

 type=”ep.GenEmp” />

 When the above statement is executed the container creates an object eo is created

in the following way:

ep.GenEmp eo=new ep.Emp ();

 If we are not specifying the value for type attribute then the object eo is created in

the following way:

ep.Emp eo=new ep.Emp ();

NOTE:

 In the above <JSP:useBean/> tag if we use a tag called <JSP:setProperty/> then

that tag becomes body tag of <JSP:useBean/> tag.

5. <JSP:setProperty/>:

 This tag is used for setting the values to the JavaBeans class object created with

respect to <JSP:useBean/> tag.

Syntax-1:

<JSP:setProperty name=”object name of a JavaBeans class”

 Property=”property name of JavaBeans class”

 Value=”value for property” />

For example:

<JSP:useBean id=”eo” class=”ep.Emp”>

 <JSP:setProperty name=”eo”

 Property=”empno”

 Value=”123” />

</JSP:useBean>

 When the above statement is executed by the container, the following statement

will be taken place.

ep.Emp eo=new ep.Emp ();

eo.setEmpno (“123”);

J2EE (Advanced) JAVA

By Mr. K. V. R Page 121

 The above syntax used to call a specific set method by passing a specific value

statically.

Syntax-2:

<JSP:setProperty name=”object name of a JavaBeans class”

 property=”*” />

 The above syntax is used for calling all generic set methods by passing there values

dynamically.

For example:

<JSP:useBean id=”eo” class=”ep.Emp”>

 <JSP:setProperty name=”eo” property=”*” />

</JSP:useBean>

 Dynamically we can pass the values through HTML program to a JSP page. All the

form fields of HTML program must be similar to data members or properties of a JavaBeans

class and in the same order we must define set of set methods.

Day - 54:

6. <JSP:getProperty/>: This tag is used for retrieving the values from JavaBeans class

object.

Syntax:

<JSP:getProperty name=”object name of JavaBeans class”

 property=”property name of JavaBeans class” />

For example:

<JSP:getProperty name=”eo” property=”empno” />

[or]

<%= eo.getEmpno () %>

For example (bean1):

web.xml:

<web-app>

</web-app>

Bean.html:

<html>

 <body>

 <h3>Bean tag test</h3>

 <form name="b1" action="bean.jsp" method="post">

 Enter ur name : <input type="text" name="b1_name"><p>

 Select the language :

 <select name="b1_lang">

 <option value=""></option>

 <option value="c"> C </option>

 <option value="c++"> C++ </option>

 <option value="java"> Java </option>

 <option value=".net"> .NET </option>

 </select><p>

 <input type="submit" value="Send">

J2EE (Advanced) JAVA

By Mr. K. V. R Page 122

 <input type="reset" value="Clear">

 </form>

 </body>

</html>

Bean.jsp:

<html>

 <body>

 <jsp:useBean id="obj" class="tp.TechBean">

 <jsp:setProperty name="obj" property="*"/>

 </jsp:useBean>

 <h3>Result of bean action tags</h3>

 Hello <jsp:getProperty name="obj" property="b1_name"/><p>

 <jsp:getProperty name="obj" property="b1_lang"/><p>

 <jsp:getProperty name="obj" property="langComments"/><p>

 <h3>Result of expression tags</h3>

 Name : <%= obj.getName () %>

 Language : <%= obj.getLang () %>

 Comment : <%= obj.getLangComments %>

 </body>

</html>

TechBean.java:

package tp;

public class TechBean

{

 String name;

 String lang;

 public TechBean () //recommended to write

 {

 }

 public void setName (String name)

 {

 this.name=name;

 }

 public void setLang (String lang)

 {

 this.lang=lang;

 }

 public String getName ()

 {

 return name;

 }

 public String getLang ()

 {

 return lang;

 }

 public String getLangComments ()

 {

 if (lang.equals ("c"))

 {

 return ("Mr. Kalyan Reddy is the best faculty in Hyderabad");

 }

 else if (lang.equals ("c++"))

 {

J2EE (Advanced) JAVA

By Mr. K. V. R Page 123

 return ("Kalyan IT is the best institute for it");

 }

 else if (lang.equals ("java"))

 {

 return ("Mr KVR is the best faculty in Hyderabad");

 }

 else if (lang.equals (".net"))

 {

 return ("Mr. Nageswara is the best faculty in Hyderabad");

 }

 else

 {

 return ("No idea..!");

 }

 }

};

For example (bean2):

web.xml:

<web-app>

</web-app>

CheckBean.html:

<html>

 <body>

 <form name="checkbean" action="CheckBean.jsp" method="post">

 Enter user name : <input type="text" name="checkbean_name" value="">

 Enter password : <input type="password" name="checkbean_pwd" value="">

 <input type="submit" value="Send">

 <input type="reset" value="Clear">

 </form>

 </body>

</html>

CheckBean.jsp:

<%@ page import="mypack.CheckBean" %>

<jsp:useBean id="check" class="CheckBean" scope="session">

 <jsp:setProperty name="check" property="*"/>

</jsp:useBean>

<%= check.validate () %>

CheckBean.java:

package mypack;

public class CheckBean

{

 String uname;

 String pwd;

 public CheckBean ()

 {

 }

 public void setUname (String uname)

 {

 this.uname=uname;

 }

J2EE (Advanced) JAVA

By Mr. K. V. R Page 124

 public void setPwd (String pwd)

 {

 this.pwd=pwd;

 }

 public String getUname ()

 {

 return uname;

 }

 public String getPwd ()

 {

 return pwd;

 }

 public boolean validate ()

 {

 if (uname.equals ("asha") && pwd.equals ("krishna"))

 {

 return (true);

 }

 else

 {

 return (false);

 }

 }

};

Day - 54:

Develop the JSP pages which illustrate the concept of implicit application object (application is an

implicit object created with respect to ServletContext and the data can be accessed through out the

entire web application)?

Answer:

First.jsp:

<html>

 <body>

 <h3>Application variable is defining</h3>

 <%!

 String name="asha";

 String pwd="krishna";

 %>

 <%

 application.setAttribute ("val1",name);

 application.setAttribute ("val2",pwd);

 %>

 Click here

 </body>

</html>

Second.jsp:

<html>

 <body>

 <h3>Application variable is retrieving</h3>

 <%!

J2EE (Advanced) JAVA

By Mr. K. V. R Page 125

 String name;

 String pwd;

 %>

 <%

 name=(String)application.getAttribute ("val1");

 pwd=(String)application.getAttribute ("val2");

 %>

 Name :: <%= name %>

 Password :: <%= pwd %>

 </body>

</html>

Day - 55:

JSTL (JSP Standard Template Library)

 In industry developing custom tags will take let of time by the java programmer. In order to

minimize this application development time, various server vendors came forward and developed

there own tags from the fundamental tags to xml, internationalization tags (i18n � 18 mean

languages). But all these tags are server dependent.

 In later stages SUN micro system has collected all these tags which are developed by various

server vendors and converted into server independent with the help of JavaSoft Inc., USA.

 JSTL contains four tags; they are core tags, database tags, formatting tags

(internationalization [i18n]) and xml tags [Only core tags and database tags are related to advanced

java].

• In order to deal with JSTL, one must deal with two jar files , they are jstl.jar and standard.jar

• These jar files contains the tag handler class information regarding the tags which are

available in JSTL.

SUN micro system has given a fixed uri, tld file and prefix name for various tags and they are as

follows:

tag name URI tld file prefix

Core http://java.sun.com/jstl/core c.tld c

Database http://java.sun.com/jstl/sql sql.tld sql

Formatting http://java.sun.com/jstl/fmt fmt.tld fmt

Xml http://java.sun.com/jstl/xml xml.tld xml

NOTE:

 The two standard jar files (jstl.jar and standard.jar) will be available in Tomcat

5.0\webapps\jsp-examples\WEB-INF\lib

 When we use any JSTL tags as a part of our JSP program we must first configure the web.xml

file and the sample entries in web.xml is shown below:

web.xml:

<web-app>

 <taglib>

 <taglib-uri>http://java.sun.com/jstl/core</taglib-uri>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 126

 <taglib-location>/WEB-INF/tlds/c.tld</taglib-location>

 </taglib>

</web-app>

1. Core tags:

 In core tags, we have < c:set….. />, < c:out….. />, < c:remove….. />, <

c:if….. />, < c:forEach….. /> and < c:choose….. />.

Day - 56:

 < c:set….. /> Syntax:

 < c:set var=”variable name”

 value=”value of the variable”

 scope=”scope of the variable” >

For example:

< c:set var=”a” value=”10” scope=”request”>

 When this statement is executed the JSP container will prepare the following

statement:

request.setAttribute (“a”, 10);

< c:out….. /> Syntax:

 This tag is used for printing the values on the browser when the client makes a

request.

< c:out value=”$ {variable name or expression}” />

For example:

< c:set var=”a” value=”10” />

< c:set var=”b” value=”20” />

< c:out value=”$ {a}” /> � 10

< c:out value=”$ {b}” /> � 20

< c:out value=”$ {a+b}” /> � 30

< c:remove….. /> Syntax:

 This tag is used for removing an attribute from scope object [request, session and

application but not page].

< c:remove var=”variable name” />

For example:

< c:set var=”a” value=”10” scope=”request” />

< c:set var=”b” value=”20” scope=”request”/>

< c:remove var=”a” /> � request.removeAttribute (a)

< c:if….. /> Syntax:

< c:if test=”$ {test condition}”>

Block of statements;

</ c:if >

For example:

< c:set var=”a” value=”20” />

< c:set var=”b” value=”30” />

< c:if test=”$ {a>b}” >

<h3>a is greater than b</h3>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 127

</ c:if >

< c:if test=”$ {b>a}” >

<h3>b is greater than a</h3>

</ c:if >

< c:forEach….. /> Syntax:

< c:forEach var=”name of the variable”

 begin=”starting value”

 end=”ending value”

 step=”updation” >

Block of statements;

</ c:forEach >

< c:choose….. /> Syntax:

< c:choose >

 < c:when test=”$ {test condition 1}”>

 Block of statements;

 </ c:when>

 < c:when test=”$ {test condition 1}”>

 Block of statements;

 </ c:when>

 …………

 < c:otherwise >

 Block of statements;

 </ c:otherwise >

</ c:choose >

In order to take the html form data into a jstl program one can use the following syntax:

param.html form field name

 Here, param is acting as an implicit object of HttpServletRequest object.

For example:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>

 <body>

 <c:choose>

 <c:when test="${Param.p>0}">p is positive</c:when>

 <c:when test="${Param.p<0}">p is negative</c:when>

 <c:otherwise>p is zero</c:otherwise>

 </c:choose>

 </body>

</html>

To run: http://localhost:7001/jstl/ex2.jsp?p=10

 In order to get wheather the html form field name is containing a value or not in

JSTL we use the following statement:

empty param.http form field name

For example:

<c:if test="${emptyParam.p}">

It returns true when p does not contain a value.

For example:

<%@ taglib uri=" http://java.sun.com/jstl/core " prefix="c" %>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 128

<html>

 <body>

 <c:set var="msg" value="welcome"/>

 <c:if test="${!empty Param.uname}">

 <c:out value="${msg}"/>

 <c:out value="${Param.uname}"/>

 </c:if>

 </body>

</html>

Day - 57:

< c:forTokens….. /> Syntax:

< c:forTokens var=”name of the variable”

 items=”list of string values”

 delims=”delimiter which is separating string value” >

Block of statements;

</ c:forTokens >

For example:

<c:forTokens var="x" items="{abc, pqr, klm}" delims=",">

 <c:out value="${x}"/>

</c:forTokens>

[or]

<c:set name="items" value="{abc, pqr, klm}"/>

In java, String items []={“abc”, “pqr”, “klm”}

<c:forTokens var="stname" items="${items}">

 <c:out value="${stname}"/>

</c:forTokens>

Write a JSTL program which illustrates the concept of < c:forTokens />?

Answer:

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>

 <body>

 List of Students

 <c:set var="str" value="abc, pqr, aaa" />

 <c:forTokens var="sname" items="${str}" delims=",">

 <c:out value="${sname}" />

 </c:forTokens>

 </body>

</html>

2. Database tags:

 In order to deal with database through JSTL we must use the following URI and

prefix:

URI=” http://java.sun.com/jstl/sql ” prefix=”sql”

 The above two details must be specified through a directive called taglib and we

must declare them in web.xml

 Since, we are dealing with database we must have the appropriate jar files i.e.,

classes111.jar for oracle database.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 129

In order to deal with database in JSTL we must use the tags < sql:setDataSource….. />

and < sql:query….. />.

< sql:setDataSource….. />:

 This tag is used for specifying how to load database drivers and obtain the

connection by specifying data source name, user name and password if required.

Syntax:

< sql:setDataSource var=”data source name”

 driver=”name of the driver”

 url=”type of the driver”

 username=”user name”

 password=”name of the password” >

< sql:query….. />:

 This tag is used for passing the query to perform insertion, deletion, updation and

selection.

Syntax:

< sql:query var=”variable name”

 datasource=”${data source name}”

 sql=”name of the query” />

Write a JSTL program which retrieves the data from the database?

Answer:

<html>

 <body>

 <%@ page import="java.sql.*" %>

 <%@ page import="oracle.jdbc.driver.*" %>

 <%

 try

 {

 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());

 out.print ("Drivers loaded");

 Connection con=DriverManager.getConnection ("jdbc:oracle:thin:@

localhost:1521:BudDinu","scott","tiger");

 out.print ("Connection established");

 String url="select * from emp";

 PreparedStatement ps=con.prepareStatement (url);

 ResultSet rs=ps.executeQuery ();

 ResultSetMetaData rsmd=rs.getMetaData ();

 ColCount=rsmd.getColumnCount ();

 i=1;

 %>

 <table bgcolor=lightyellow align=center border=2>

 <%

 while (i<=ColCount)

 {

 %>

 <th>

 <% out.print (rsmd.getColumnName (i)); %>

 </th>

 <%

 i++;

J2EE (Advanced) JAVA

By Mr. K. V. R Page 130

 }

 while (rs.next ())

 {

 %>

 <tr>

 <%

 j=1;

 while (j<=ColCount)

 {

 %>

 <td>

 <% out.print (rs.getString (j)); %>

 </td>

 <%

 j++;

 }

 %>

 </tr>

 <%

 rs.close ();

 con.close ();

 }

 catch (Exception e)

 {

 e.printStackTrace ();

 }

 %>

 </body>

</html>

Day - 58:

SWINGS

• In the earlier days SUN micro system; we have a concept called awt.

• awt is used for creating GUI components.

• All awt components are written in ‘C’ language and those components appearance is

changing from one operating system to another operating system. Since, ‘C’ language is the

platform dependent language.

• In later stages SUN micro system has developed a concept called swings.

• Swings are used for developing GUI components and all swing components are developed in

java language.

• Swing components never change their appearance from one operating system to another

operating system. Since, they have developed in platform independent language.

Differences between awt and swings:

Awt Swings

1. awt components are developed in ‘C’

language.

1. Swing components are developed in java

language.

2. All awt components are platform

dependent.

2. All swing components are platform

independent.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 131

3. All awt components are heavy weight

components, since whose processing

time and main memory space is more.

3. All swing components are light weight

components, since its processing time

and main memory space is less.

NOTE: All swing components in java are preceded with a letter ‘J’.

For example:

JButton JB=new JButton (“ok”);

 All components of swings are treated as classes and they are belongs to a package called

javax.swing.*

 In swings, we have two types of components. They are auxiliary components and logical

components.

• Auxiliary components are those which we can touch and feel. For example, mouse,

keyboard, etc.

• Logical components are those which we can feel only.

 Logical components are divided into two types. They are passive or inactive components

and active or interactive components.

• Passive components are those where there is no interaction from user. For example, JLabel.

• Active components are those where there is user interaction. For example, JButton,

JCheckbox, JRadioButton, etc.

� In order to provide functionality or behavior to swing GUI active components one must

import a package called java.awt.event.*

� This package contains various classes and interfaces which provides functionality to active

components.

� EDM is one which always provides the functionality to GUI active components.

Steps in EDM:

1. Every GUI active component can be processed in two ways. They are based on name or

label of the component and based on reference of the component. Whenever we interact

with any GUI component whose reference and label will be stored in one of the predefined

class object whose general notation is xxxEvent class.

For example:

JButton � ActionEvent

JCheckbox � ItemEvent

2. In order to provide behavior of the GUI component we must write some statements in

methods only. And these methods are given by SUN micro system without definition. Such

type of methods is known as abstract methods. In general, all abstract methods present in

interfaces and those interfaces in swings known as Listenters. Hence, each and every

interactive component must have the appropriate Listener whose general notation is

xxxListener.

For example:

JButton � ActionListener

JCheckbox � ItemListener

J2EE (Advanced) JAVA

By Mr. K. V. R Page 132

3. Identify the abstract methods which are present in xxxListener to provide functionality to

GUI component by overriding the abstract method.

For example:

JButton ActionListener � public abstract void actionPerformed (ActionEvent)

JCheckbox ItemListener � public abstract void itemStateChanged (ItemEvent)

4. Every GUI interactive component must be registered with appropriate Listener. Each

interactive component will have the following generalized method to register or unregister

with appropriate Listener.

public void addXxxListener (XxxListener) � Registration

public void removeXxxListener (XxxListener) � Unregistration

For example:

public void addActionListener (ActionListener) � Registration

public void removeActionListener (ActionListener) � Unregistration

Day - 59:

Hierarchy chart in Swings:

NOTE: Creating any component is nothing but creating an object of appropriate swing component

class.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 133

Develop the following application:

Answer:

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

class Op extends Frame implements ActionListener

{

 JLabel jl1, jl2, jl3;

 JTextField jtf1, jtf2, jtf3;

 JButton jb1, jb2, jb3, jb4;

 Op ()

 {

 setTitle ("Operations");

 setSize (200, 200);

 setLayout (new FlowLayout ());

 jl1=new JLabel ("Enter first number: ");

 jl2=new JLabel ("Enter second number: ");

 jl3=new JLabel ("Result: ");

 jtf1=new JTextField (20);

 jtf2=new JTextField (20);

 jtf3=new JTextField (20);

 jb1=new JButton ("Sum");

 jb2=new JButton ("Sub");

 jb3=new JButton ("Mul");

 jb4=new JButton ("Exit");

 add (jl1);add (jtf1);

 add (jl2);add (jtf2);

 add (jl3);add (jtf3);

 add (jb1);add (jb2);add (jb3);add (jb4);

 jb1.addActionListener (this);

 jb2.addActionListener (this);

 jb3.addActionListener (this);

 jb4.addActionListener (this);

 setVisible (true);

 }

 public void actionPerformed (ActionEvent ae)

 {

 if (ae.getSource ()==jb1)

 {

 String s1=jtf1.getText ();

 String s2=jtf2.getText ();

 int n3=Integer.parseInt (s1)+Integer.parseInt (s2);

J2EE (Advanced) JAVA

By Mr. K. V. R Page 134

 String s3=String.valueOf (n3);

 jtf3.setText (s3);

 }

 if (ae.getSource ()==jb2)

 {

 String s1=jtf1.getText ();

 String s2=jtf2.getText ();

 int n3=Integer.parseInt (s1)-Integer.parseInt (s2);

 String s3=String.valueOf (n3);

 jtf3.setText (s3);

 }

 if (ae.getSource ()==jb3)

 {

 String s1=jtf1.getText ();

 String s2=jtf2.getText ();

 int n3=Integer.parseInt (s1)*Integer.parseInt (s2);

 String s3=String.valueOf (n3);

 jtf3.setText (s3);

 }

 if (ae.getSource ()==jb4)

 {

 System.exit (0);

 }

 }

};

class OpDemo

{

 public static void main (String [] args)

 {

 Op o1=new Op ();

 }

};

Day - 60:

FILTERS

 A filter is a java program which will handle pre-requests and post-responses at server side.

Filter programs always runs in the background only.

Advantages of filters:

1. It provides 100% security to the server side applications.

2. We can achieve data compression, data encryption, auditing and authentication.

 It is highly recommended to develop the filter programs to deal with background related

tasks such as checking username and password, validations, etc. In servlet, its always recommended

to write the business logic by avoiding the background related tasks.

In order to develop any filter application we must deal with the following interfaces:

javax.servlet.Filter

javax.servlet.FilterConfig

javax.servlet.FilterChain

J2EE (Advanced) JAVA

By Mr. K. V. R Page 135

javax.servlet.Filter: Filter is an interface which provides the life cycle methods for developing filter

applications. To develop any filter application the user defined class must implement

javax.servlet.Filter (interface).

For example:

public class X implements javax.servlet.Filter

{

 ……………….;

 ……………….;

}

Life cycle methods of Filter: The Filter interface contains the following life cycle methods; they are:

public void init (FilterConfig);

public void doFilter (ServletRequest, ServletResponse, FilterChain);

public void destroy ();

javax.servlet.FilterConfig:

 FilterConfig is an interface which will be created by container and it contains initialization

parameter details and technologies information for a filter and this information must be specified in

web.xml. This object will exist one for filter in a web application.

javax.servlet.FilterChain:

 FilterChain is an interface whose object created by container and it is pointing to group of

filters (chain of filters) which are participating in pre-request process.

For example:

public void doFilter (ServletRequest req, ServletResponse res, FilterChain FC)

{

 ……………;

 ……………;

 FC.doFilter (req, res);

}

 FC.doFilter (req, res) will call next filter which is available filter chain. In whichever order we

write the declaration details of filter in web.xml in the same order filters will be called.

Filter entries related to web.xml:

web.xml:

<web-app>

 <filter>

J2EE (Advanced) JAVA

By Mr. K. V. R Page 136

 <filter-name>abc</filter-name>

 <filter-class>FilterEx</filter-class>

 </filter>

 <servlet>

 <servlet-name>pqr</servlet-name>

 <servlet-class>ServletEx</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>pqr</servlet-name>

 <url-pattern>/Serv</url-pattern>

 </servlet-mapping>

 <filter-mapping>

 <filter-name>abc</filter-name>

 <url-pattern>/Filt</url-pattern>

 </filter-mapping>

</web-app>

Day - 61:

Develop a java program which will illustrate the concept of Filters?

Answer:

web.xml:

<web-app>

 <filter>

 <filter-name>abc</filter-name>

 <filter-class>FilterEx</filter-class>

 </filter>

 <servlet>

 <servlet-name>pqr</servlet-name>

 <servlet-class>ServletEx</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>pqr</servlet-name>

 <url-pattern>/Serv</url-pattern>

 </servlet-mapping>

 <filter-mapping>

 <filter-name>abc</filter-name>

 <url-pattern>/Filt</url-pattern>

 </filter-mapping>

</web-app>

FilterEx.java:

import javax.servlet.*;

import java.io.*;

public class FilterEx implements Filter

{

 public FilterEx ()

 {

J2EE (Advanced) JAVA

By Mr. K. V. R Page 137

 System.out.println ("Inside constructor of Filter class");

 }

 public void init (FilterConfig fcon) throws ServletException

 {

 System.out.println ("Inside init () method of Filter class");

 }

 public void doFilter (ServletRequest req, ServletResponse res, FilterChain fc) throws IOException,

ServletException

 {

 System.out.println ("Inside doFilter () method of Filter class");

 int x=Integer.parseInt (req.getParameter ("first"));

 int y=Integer.parseInt (req.getParameter ("second"));

 if (x<0 || y<0)

 {

 PrintWriter pw=res.getWriter ();

 pw.print ("<html><body>Sorry!! Ur input should be only positive numbers</body></html>");

 }

 else

 {

 fc.doFilter (req, res);

 }

 }

 public void destroy ()

 {

 System.out.println ("Inside destroy () method of Filter class");

 }

};

ServletEx.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class ServletEx extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 System.out.println ("Inside doGet () method of Servlet class");

 int x=Integer.parseInt (req.getParameter ("first"));

 int y=Integer.parseInt (req.getParameter ("second"));

 int z=x+y;

 PrintWriter pw=res.getWriter ();

 pw.println ("<html><body>Result is "+z+"</body></html>");

 }

};

CONNECTION POOLING

 Connection pooling is the process of group of readily available unnamed connections. As a

java programmer we must use one of the name connections from connection pooling and use it in a

java program.

 In connection pooling, we can achieve concurrent execution and we can develop 3-tier

applications. In connection pooling, we make use of Type-3 driver which are provided by server

vendors.

J2EE (Advanced) JAVA

By Mr. K. V. R Page 138

 Connection pooling is a unique concept provided by weblogic for achieving concurrent

execution.

Day - 62:

Steps for connection pooling: Connection pooling service provided by application servers only.

1. Go to weblogic console by opening a browser. http://localhost:7001/console

2. Enter username and password of weblogic.

3. After entering username and password we will get the following window:

J2EE (Advanced) JAVA

By Mr. K. V. R Page 139

4. After choosing connection pool option follow the following steps:

J2EE (Advanced) JAVA

By Mr. K. V. R Page 140

Steps for creating data sources:

NOTE:

 In a Servlet program we should always use JNDI name which in turns pointing to appropriate

data source name and it points to one of named connection in connection pool.

For example:

web.xml:

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>FirstConPoolServ</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/ServPool</url-pattern>

 </servlet-mapping>

</web-app>

index.html:

<html>

 <body bgcolor=lightblue>

 <center>

 <form action="./ServPool">

 Enter table name: <input type="text" name="table" value="">

 <input type="submit" value="Bring data">

 </center>

 </body>

</html>

FirstConPoolServ.java:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

import javax.sql.*;

import javax.naming.InitialContext;

public class FirstConPoolServ extends HttpServlet

J2EE (Advanced) JAVA

By Mr. K. V. R Page 141

{

 public void service (HttpServletRequest req, HttpServletResponse res) throws IOException, ServletException

 {

 PrintWriter pw=res.getWriter ();

 String tabname=req.getParameter ("table");

 try

 {

 Connection con=getPoolCon ();// our own method

 Statement st=con.createStatement ();

 ResultSet rs=st.executeQuery ("select * from "+tabname);

 ResultSetMetaData rsmd=rs.getMetaData ();

 int ColCount=rsmd.getColumnCount ();

 pw.println ("<html><body bgcolor=#ffffa9><center><h3>Details of "+tabname);

 pw.println ("</h3>
<table><tr bgcolor=lightblue>");

 for (int col=1; col<=ColCount; col++)

 {

 pw.println ("<th>"+rsmd.getColumnLabel (col)+" </th>");

 }

 pw.println ("</tr>");

 while (rs.next())

 {

 pw.println ("<tr bgcolor=#ffffa9>");

 for (int i=1; i<=ColCount; i++)

 {

 pw.println ("<td>"+rs.getString (i)+" </td>");

 }

 pw.println ("</tr>");

 }

 pw.println ("</table>
To view another tableClick here");

 pw.println ("</center></body></html>");

 }

 catch (Exception e)

 {

 pw.println ("<html><body bgcolor=#ffffa9><center><h3>Table does not exist in database");

 pw.println ("</h3>To view another tableClick here”);

 pw.println (“</center></body></html>");

 System.out.println (e);

 }

 }

 public Connection getPoolCon ()

 {

 Connection con=null;

 try

 {

 InitialContext ic=new InitialContext ();

 DataSource ds=(DataSource) ic.lookup ("FirstJNDI");

 con=ds.getConnection ();

 }

 catch (Exception e)

 {

 System.out.println (e);

 }

 return con;

 }

};

