
BSSC 2005(2) Issue 1.0

Java

Coding Standards

Prepared by:
ESA Board for Software
Standardisation and Control
(BSSC)

european space agency / agence spatiale européenne
8-10, rue Mario-Nikis, 75738 PARIS CEDEX, France

BSSC 2005(2) Issue 1.0 ii
DOCUMENT STATUS SHEET

Document Status Sheet

DOCUMENT STATUS SHEET

1. DOCUMENT TITLE: BSSC 2005(2) Issue 1.0

2. ISSUE 3. REVISION 4. DATE 5. REASON FOR CHANGE

0 1 10/23/2003 New document

0 2 02/02/2004

Distinction rules and recommendations,
security information added to the securi-
ty chapter, various corrections, elabora-
tion on real-time JavaTM 2 chapter,
clean-up of acronyms and terms, intro-
ductory text added to each chapter,
merger casting and template chapters.

0 3 19/03/2004 New sections 6.5, 13.4

0 4 28/05/2004 Reworked and streamlined draft.

0 5 30/06/2004

First draft (restructured) for open re-
view.

0 6 06/12/2004

Issues from review round incorporated.
Extensive restructuring. Material added
on real-time Java, security, and portabil-
ity.

0 7 13/01/2005

Comments of Philippe Chevalley incor-
porated, text-paragraphs rephrased, ex-
amples streamlined, new rules and rec-
ommendations added.

0 8 02/09/2005

Incorporated C++ chapter from F.
Siebert. Added “Rationale” sections to
many rules. Formatting of examples
corrected. New rules and recommenda-
tions added.

1 0 03/03/2005 First issue

March 2005 - Board for Software Standardisation and Control
M. Spada and J-L Terraillon, BSSC Co-chair

Copyright © 2005 by European Space Agency

BSSC 2005(2) Issue 1.0 iii
TABLE OF CONTENTS

Table of Contents

Document Status Sheet ... ii

Table of Contents .. iii

List of Rules ... vi

List of Recommendations ... xii

Preface ... xvi

Chapter 1
Introduction .. 17
1.1 Scope and Applicability 17
1.2 Position of this document with respect to the ECSS-E40 and ECSS-Q80 Standards
17
1.3 Document Overview 18
1.4 Glossary 18
1.5 Acronyms 24

Chapter 2
Installation, Build and Updates .. 26
2.1 Introduction 26
2.2 Apache Ant 26
2.3 Preferences 26
2.4 Software Distribution 27
2.5 Implementation Files 27

Chapter 3
Source Code Structure .. 28
3.1 Implementation Files 28
3.2 General Code Indentation Rules 29
3.3 Definitions 31
3.4 Statements 32
3.5 Blank Lines and Spaces 36

Chapter 4
Naming .. 39
4.1 Introduction 39
4.2 General Naming Conventions 39
4.3 Package Names 41

BSSC 2005(2) Issue 1.0 iv
TABLE OF CONTENTS

4.4 Type, Class and Interface Names 42
4.5 Method Names 44
4.6 Variable Names 45
4.6.1 Parameter Names 46
4.6.2 Instance Variable Names 46
4.7 Constant Names 47

Chapter 5
Documentation and Commenting Conventions .. 48
5.1 Introduction 48
5.2 Comment Types 48
5.3 Documenting the Detailed Design 48
5.4 Javadoc General Descriptions 49
5.5 Javadoc Comments 49
5.6 Comment Contents and Style 52
5.7 Internal Comments 53

Chapter 6
Java Design and Programming Guidelines ... 55
6.1 Introduction 55
6.2 Packages 55
6.3 General Class Guidelines 58
6.4 Nested Classes, Inner Classes, and Anonymous Classes 62
6.5 Constructors and Object Lifecycle 63
6.6 Methods 66
6.7 Local Variables and Expressions 67
6.8 Generics and Casting 68
6.9 Constants and Enumerated Types 70
6.10 Thread Synchronization Issues 72

Chapter 7
Robustness ... 77
7.1 Introduction 77
7.2 Design by Contract 77
7.3 Assertions 78
7.4 Debugging 79
7.5 Exceptions and Error Handling 79
7.6 Type Safety 82

Chapter 8
Portability .. 83
8.1 Introduction 83
8.2 Rules 83

Chapter 9
Real-Time Java ... 90

BSSC 2005(2) Issue 1.0 v
TABLE OF CONTENTS

9.1 Introduction 90
9.2 A Note on Automatic Garbage Collection 90
9.3 Soft Real-Time Development Guidelines 91
9.4 Hard Real-Time Development Guidelines 94
9.5 Safety-Critical Development Guidelines 99

Chapter 10
Embedding C++ or C in Java .. 102
10.1 Introduction 102
10.2 Alternatives to JNI 102
10.3 Safety 103
10.4 Performance 104
10.5 Low Level Hardware Access 107
10.6 Non-Standard Native Interfaces 107

Chapter 11
Security ... 108
11.1 Introduction 108
11.2 The Java Security Framework 108
11.3 Privileged Code 108
11.4 Secure Coding 110
11.5 Serialization 110
11.6 Native Methods and Security 111
11.7 Handling Sensitive Information 112

Bibliography... 113

BSSC 2005(2) Issue 1.0 vi
LIST OF RULES

List of Rules

Rule 1: Use the Apache Ant tool to automatically build your project. 26

Rule 2: When distributing a project, package all necessary class and resource files in a jar
file. .. 27

Rule 3: Define only one class or interface per .java file. .. 27

Rule 4: Use the following structure for all implementation files: .. 28

Rule 5: Do not use tab characters in implementation files, use plain spaces instead. 29

Rule 6: Use the following order to declare members of a class: ... 29

Rule 7: Use four spaces of indentation. ... 29

Rule 8: Format class and interface definitions according to the following model: 31

Rule 9: Put single variable definitions in separate lines. .. 32

Rule 10: Put single statements in separate lines. .. 32

Rule 11: Format compound statements according to the following guidelines: 32

Rule 12: Always put braces around statements contained in control structures. 33

Rule 13: Format if-else statements according to the following models: 33

Rule 14: Format for statements according to the following model: 34

Rule 15: Format while statements according to the following model: 34

Rule 16: Format do-while statements according to the following model: 35

Rule 17: Format switch statements according to the following model: 35

Rule 18: Format try-catch statements according to the following model: 35

Rule 19: Leave two blank lines: ... 36

Rule 20: Leave one blank line: ... 36

Rule 21: Always use a space character: .. 37

Rule 22: Use American English for identifiers. ... 39

Rule 23: Restrict identifiers to the ASCII character set. ... 39

Rule 24: Avoid names that differ only in case. ... 40

Rule 25: Capitalize the first letter of standard acronyms. .. 41

Rule 26: Do not hide declarations. ... 41

Rule 27: Use the reversed, lower-case form of your organization’s Internet domain name as
the root qualifier for your package names. ... 41

Rule 28: Use a single, lower-case word as the root name of each package. 42

BSSC 2005(2) Issue 1.0 vii
LIST OF RULES

Rule 29: Capitalize the first letter of each word that appears in a class or interface name.
42

Rule 30: Use nouns or adjectives when naming interfaces. .. 42

Rule 31: Use nouns when naming classes. ... 43

Rule 32: Pluralize the names of classes that group related attributes, static services or con-
stants. ... 43

Rule 33: Use lower-case for the first word and capitalize only the first letter of each subse-
quent word that appears in a method name. ... 44

Rule 34: Use verbs in imperative form to name methods that: .. 44

Rule 35: Use verbs in present third person to name analyzer methods returning a boolean
value. .. 44

Rule 36: Use nouns to name analyzer methods returning a non-boolean value, or, alterna-
tively, name them using the verb “get”. .. 45

Rule 37: Name methods setting properties of an object (set methods) using the verb “set”. ..
45

Rule 38: Use nouns to name variables and attributes. .. 45

Rule 39: When a constructor or “set” method assigns a parameter to a field, give that pa-
rameter the same name as the field. ... 46

Rule 40: Qualify instance variable references with this to distinguish them from local vari-
ables. .. 46

Rule 41: Use upper-case letters for each word and separate each pair of words with an un-
derscore when naming Java constants. ... 47

Rule 42: Provide a summary description and overview for each application or group of pack-
ages. ... 49

Rule 43: Provide a summary description and overview for each package. 49

Rule 44: Use documentation comments to describe the programming interface. 49

Rule 45: Document public, protected, package, and private members. 50

Rule 46: Use a single consistent format and organization for all documentation comments. ..
50

Rule 47: Wrap keywords, identifiers, and constants mentioned in documentation comments
with <code>...</code> tags. ... 50

Rule 48: Wrap full code examples appearing in documentation comments with <pre> ...
</pre> tags. .. 51

Rule 49: Include Javadoc tags in a comment in the following order: 51

Rule 50: Include an @author and a @version tag in every class or interface description. . 51

Rule 51: Fully describe the signature of each method. .. 52

Rule 52: Document synchronization semantics. .. 53

Rule 53: Add a “fall-through” comment between two case labels, if no break statement sepa-
rates those labels. .. 53

Rule 54: Label empty statements. ... 54

Rule 55: Use end-line comments to explicitly mark the logical ends of conditionals loops, ex-
ceptions, enumerations, methods or classes. .. 54

BSSC 2005(2) Issue 1.0 viii
LIST OF RULES

Rule 56: Do not use the wildcard (“*”) notation in import statements. 57

Rule 57: Put all shared classes and interfaces that are internal to a project in a separate
package called “internal”. ... 57

Rule 58: Make classes that do not belong to a package's public API private. 58

Rule 59: Make all class attributes private. ... 58

Rule 60: A class shall define at least one constructor. .. 63

Rule 61: Hide any constructors that do not create valid instances of the corresponding class,
by declaring them as protected or private. ... 63

Rule 62: Do not call non-final methods from within a constructor. 63

Rule 63: Methods that do not have to access instance variables shall be declared static. . 66

Rule 64: A parameter that is not changed by the method shall be declared final. 66

Rule 65: Use parentheses to explicitly indicate the order of execution of numerical operators
. .. 68

Rule 66: Use generics instead of casting when navigating through collections. 69

Rule 67: Preserve method contracts in derived classes. ... 78

Rule 68: Explicitly check method parameters for validity, and throw an adequate exception
in case they are not valid. Do not use the assert statement for this purpose. 78

Rule 69: Add diagnostic code to all areas that, according to the expectations of the program-
mer, should never be reached. .. 79

Rule 70: Do not use expressions with side effects as arguments to the assert statement.
79

Rule 71: Use the Java logging mechanism for all debugging statements instead of resorting
to the System.out.println function. .. 79

Rule 72: Use unchecked, run-time exceptions to handle serious unexpected abnormal situa-
tions, including those that may indicate errors in the program’s logic. 80

Rule 73: Use checked exceptions to report errors that may occur, even if rarely, under nor-
mal program operation. .. 80

Rule 74: Do not silently absorb a run-time or error exception. .. 81

Rule 75: Never ignore error values reported by methods. ... 82

Rule 76: Do not rely on thread scheduling particularities to define the behavior of your pro-
gram, use synchronization instead. .. 83

Rule 77: Avoid native methods. ... 84

Rule 78: Restrict the use of the System.exit method to the cases described below. 85

Rule 79: Do not hard-code file names and paths in your program. 86

Rule 80: Always make JDBC driver names configurable, do not hard code them. 86

Rule 81: Do not rely on a particular convention for line termination. 86

Rule 82: Restrict the use of System.in, System.out or System.err to programs explicitly in-
tended for the command line. .. 87

Rule 83: When necessary, use the internationalization and localization features of the Java
platform. ... 87

Rule 84: Do not hard code position and sizes of graphical elements. 88

BSSC 2005(2) Issue 1.0 ix
LIST OF RULES

Rule 85: Do not hard code text sizes or font names. ... 88

Rule 86: Do not hard code colors or other GUI appearance elements. 88

Rule 87: Do not retain Graphics objects passed to update methods of graphical compo-
nents. ... 88

Rule 88: Do not use methods marked as deprecated in the Java API. 89

Rule 89: Do not rely on the format of the result of the java.net.InetAddress.getHostName
method. .. 89

Rule 90: Always check for local availability of Pluggable Look and Feel (PLAF) classes, and
provide a safe fall back in case they are not available. ... 89

Rule 91: Do not mix classes compiled against different versions of the Java platform. 89

Rule 92: Use the Java 2 Standard Edition (J2SE) platform. .. 91

Rule 93: Baseline a particular version of the J2SE libraries. ... 91

Rule 94: Use cooperating hard real-time components to interface with native code. 91

Rule 95: Use cooperating hard real-time components to implement performance-critical
code. ... 92

Rule 96: Use cooperating hard real-time components to interact directly with hardware de-
vices. .. 92

Rule 97: Isolate JVM dependencies. .. 92

Rule 98: Use a hard real-time subset of the standard Java libraries. 94

Rule 99: Use a hard real-time subset of the real-time specification for Java. 94

Rule 100: Use enhanced replacements for certain RTSJ libraries. 95

Rule 101: Assure availability of supplemental libraries. ... 95

Rule 102: Use an intelligent linker and annotations to guide initialization of static variables. ..
95

Rule 103: Use only 128 priority levels for NoHeapRealtimeThread. 96

Rule 104: Do not instantiate java.lang.Thread or javax.realtime.RealtimeThread. 96

Rule 105: Preallocate Throwable instances. .. 96

Rule 106: Restrict access to Throwable attributes. .. 96

Rule 107: Annotate all program components to Indicate scoped memory behaviors. 96

Rule 108: Carefully restrict use of methods declared with @AllowCheckedScopedLinks an-
notation. .. 97

Rule 109: Carefully restrict use of methods declared with @ImmortalAllocation annotation. ..
97

Rule 110: Use @StaticAnalyzable annotation to identify methods with bounded resource
needs. ... 97

Rule 111: Use hierarchical organization of memory to support software modules. 98

Rule 112: Use the @TraditionalJavaShared conventions to share objects with traditional Ja-
va. ... 98

Rule 113: Avoid synchronized statements. .. 98

BSSC 2005(2) Issue 1.0 x
LIST OF RULES

Rule 114: Inherit from PCP in any class that uses PriorityCeilingEmulation MonitorControl
policy. ... 98

Rule 115: Inherit from Atomic in any class that synchronizes with interrupt handlers. 98

Rule 116: Annotate the ceilingPriority() method of Atomic and PCP classes with @Ceiling. ...
98

Rule 117: Do not override Object.finalize(). ... 99

Rule 118: Except where indicated to the contrary, use hard real-time programming guide-
lines. ... 99

Rule 119: Use only 28 priority levels for NoHeapRealtimeThread. 99

Rule 120: Prohibit use of @OmitSubscriptChecking annotation. .. 99

Rule 121: Prohibit invocation of methods declared with @AllowCheckedScopedLinks anno-
tation. .. 99

Rule 122: Require all code to be @StaticAnalyzable. ... 100

Rule 123: Require all classes with Synchronized methods to inherit PCP or Atomic. 100

Rule 124: Prohibit dynamic class loading. ... 100

Rule 125: Prohibit use of blocking libraries. ... 100

Rule 126: Prohibit use of PriorityInheritance MonitorControl policy. 100

Rule 127: Do not share safety-critical objects with a traditional Java virtual machine. 101

Rule 128: Use the established coding standards for C++ or C for the development of C++ or
C code that is embedded into the Java code. .. 103

Rule 129: Check for ExceptionOccurred() after each call of a function in the JNI interface if
that may cause an exception. .. 103

Rule 130: Mark native methods as private. .. 103

Rule 131: Select method names for C++ or C methods that state clearly that such a method
is a native method. ... 104

Rule 132: Avoid name overloading for native methods. .. 104

Rule 133: Do not use weak global references. .. 104

Rule 134: Use DeleteLocalRef() to free references in native code that were obtained in a
loop. .. 105

Rule 135: Use NewGlobalRef()/DeleteGlobalRef() only for references that are stored outside
of reachable memory that survives from one JNI call to the next. 105

Rule 136: Avoid using JNI for native HW access if alternative means are available. 107

Rule 137: Do not use non-standard native interfaces unless there are very good reasons to
do so. .. 107

Rule 138: Restrict the use of non-standard native interface uses to as few functions as pos-
sible. ... 107

Rule 139: Refrain from using non-final public static variables. .. 110

Rule 140: Never return references to internal mutable objects containing sensitive data.
110

Rule 141: Never store user provided mutable objects directly. ... 110

BSSC 2005(2) Issue 1.0 xi
LIST OF RULES

Rule 142: Use the transient keyword for fields that contain direct handles to system re-
sources, or that contain information relative to an address space. 111

Rule 143: Define class specific serializing/deserializing methods. 111

Rule 144: While deserializing an object of a particular class, use the same set of restrictions
used while creating objects of the class. .. 111

Rule 145: Explicitly clear sensitive information from main memory. 112

Rule 146: Always store sensitive information in mutable data structures. 112

BSSC 2005(2) Issue 1.0 xii
LIST OF RECOMMENDATIONS

List of Recommendations

Recommendation 1: Use the Ant tool to automate as many additional project tasks as possi-
ble. .. 26

Recommendation 2: Use the Java Preferences API to store and retrieve all run-time config-
uration data. ... 26

Recommendation 3: Use a standard template or utility program to provide a starting point for
implementation files. .. 28

Recommendation 4: Avoid lines longer than 80 characters. ... 30

Recommendation 5: When breaking long lines, follow these guidelines: 30

Recommendation 6: Avoid parentheses around the return values of return statements. ... 36

Recommendation 7: Separate groups of statements in a method using single blank lines.
37

Recommendation 8: Pick identifiers that accurately describe the corresponding program en-
tity. .. 39

Recommendation 9: Use terminology applicable to the domain. ... 40

Recommendation 10: Avoid long (e.g. more than 20 characters) identifiers. 40

Recommendation 11: Use abbreviations sparingly and consistently. 40

Recommendation 12: Use documentation comments to describe programming interfaces
before implementing them. .. 48

Recommendation 13: Consider marking the first occurrence of an identifier with a {@link}
tag. ... 51

Recommendation 14: Document preconditions, post conditions, and invariant conditions.
52

Recommendation 15: Include examples. ... 53

Recommendation 16: Use “this” rather than “the” when referring to instances of the current
class. .. 53

Recommendation 17: Document local variables with an end-line comment. 53

Recommendation 18: Use separate packages for each of the software components defined
during the design phase. .. 55

Recommendation 19: Place into the same package types that are commonly used,
changed, and released together, or mutually dependent on each other. 55

Recommendation 20: Avoid cyclic package dependencies. .. 56

Recommendation 21: Isolate volatile classes and interfaces in separate packages. 56

BSSC 2005(2) Issue 1.0 xiii
LIST OF RECOMMENDATIONS

Recommendation 22: Avoid making packages that are difficult to change dependent on
packages that are easy to change. .. 56

Recommendation 23: Maximize abstraction to maximize stability. 56

Recommendation 24: Capture high-level design and architecture as stable abstractions or-
ganized into stable packages. .. 57

Recommendation 25: Consider using Java interfaces instead of classes for the public API of
a package. .. 58

Recommendation 26: Consider declaring classes representing fundamental data types as fi-
nal. .. 59

Recommendation 27: .Reduce the size of classes and methods by refactoring. 59

Recommendation 28: Avoid inheritance across packages; rely on interface implementation
instead. ... 59

Recommendation 29: Limit the use of anonymous classes. .. 62

Recommendation 30: Avoid creating unnecessary objects. .. 63

Recommendation 31: Avoid using the new keyword directly. .. 64

Recommendation 32: Consider the use of static factory methods instead of constructors.
64

Recommendation 33: Use nested constructors to eliminate redundant code. 64

Recommendation 34: Use lazy initialization. .. 65

Recommendation 35: Refrain from using the instanceof operator. Rely on polymorphism in-
stead. .. 66

Recommendation 36: Use local variables for one purpose only. ... 67

Recommendation 37: Replace repeated non-trivial expressions with equivalent methods.
67

Recommendation 38: Consider using the StringBuffer class when concatenating strings.
67

Recommendation 39: Use the enhanced for control structure and generics wherever possi-
ble/applicable. .. 68

Recommendation 40: Be careful when using the import static feature to define global con-
stants. ... 70

Recommendation 41: Use type-safe enumerations as defined using the enum keyword. .. 71

Recommendation 42: Use threads only where appropriate. .. 72

Recommendation 43: Reduce synchronization to the minimum possible. 72

Recommendation 44: Do not synchronize an entire method if the method contains signifi-
cant operations that do not need synchronization. .. 72

Recommendation 45: Avoid unnecessary synchronization when reading or writing instance
variables. .. 73

Recommendation 46: Use synchronized wrappers to provide synchronized interfaces. 74

Recommendation 47: Consider using notify() instead of notifyAll(). 75

Recommendation 48: Use the double-check pattern for synchronized initialization. 75

Recommendation 49: Define method contracts and enforce them. 77

BSSC 2005(2) Issue 1.0 xiv
LIST OF RECOMMENDATIONS

Recommendation 50: Whenever possible, a method should either return the result specified
by its contract, or throw an exception when that is not possible. ... 78

Recommendation 51: Rely on Java's assert statement to explicitly check for programming
errors in your code. .. 78

Recommendation 52: Whenever possible, use finally blocks to release resources. 81

Recommendation 53: Only convert exceptions to add information. 81

Recommendation 54: Encapsulate enumerations as classes. .. 82

Recommendation 55: Whenever possible, prefer the Swing API to the old AWT API for de-
veloping graphical user interfaces. .. 83

Recommendation 56: Do not use the java.lang.Runtime.exec method. 85

Recommendation 57: Do not hard-code display attributes, like position and size for graphical
element, text font types and sizes, colors, layout management details, etc. 85

Recommendation 58: Check all uses of the Java reflection features for indirect invocation of
methods that may cause portability problems. ... 85

Recommendation 59: Rely on the widely known POSIX conventions to define the syntax of
your command line options. ... 87

Recommendation 60: Restrict the use of non ASCII characters in your messages to the min-
imum possible. ... 87

Recommendation 61: Consider using JFace and SWT for Graphical User Interfaces. 91

Recommendation 62: Restrict the use of advanced libraries. ... 92

Recommendation 63: Carefully select an appropriate soft real-time virtual machine. 93

Recommendation 64: Use development tools to enforce consistency with hard real-time
guidelines. .. 99

Recommendation 65: Use development tools to enforce consistency with safety-critical
guidelines. .. 101

Recommendation 66: Avoid embedding C++ or C code in Java as much as possible. Use
other coupling solutions instead if C++ or C code needs to be integrated to the software
product. .. 102

Recommendation 67: Avoid the use of C++ or C code embedded using the JNI to increase
performance. .. 105

Recommendation 68: Avoid passing reference values to native code. 105

Recommendation 69: Avoid calling back into Java code from C/C++ code. 106

Recommendation 70: Put as much functionality as possible into the Java code and as little
as possible in the JNI code. ... 106

Recommendation 71: Avoid Get*ArrayElements() and Get*ArrayElementsCritical() functions.
.. 106

Recommendation 72: Avoid frequent calls to the reflective functions FindClass(), GetMetho-
dID(), GetFieldID(), and GetStaticFieldID(). ... 106

Recommendation 73: Keep privileged code as short as possible. 109

Recommendation 74: Check all uses of tainted variables in privileged code. 109

Recommendation 75: Reduce the scope of methods as much as possible. 110

Recommendation 76: Consider encrypting serialized byte streams. 111

BSSC 2005(2) Issue 1.0 xv
LIST OF RECOMMENDATIONS

Recommendation 77: Check native methods before relaying on them for privileged code.
111

BSSC 2005(2) Issue 1.0 xvi
PREFACE

Preface

This Coding Standard is based upon the experience of developing custom
space system software using the Java programming language. Both published expe-
rience and best practice rules obtained by Industry or by means of in-house develop-
ments are included.

The BSSC wishes to thank the European Space Research and Technology
Centre (ESTEC), Noordwijk, The Netherlands, and in particular Peter Claes, for
preparing the standard. The BSSC also thank all those who contributed ideas for this
standard, in particular Dr Kelvin Nilsen (R/T chapter) and Dr James Hunt, Dr Fridtjof
Siebert (R/T chapter and C/C++ integration chapter). The BSSC members that have
reviewed the standard: Mariella Spada, Michael Jones, Jean-Loup Terraillon, Jean
Pierre Guignard, Jerome Dumas, Daniel Ponz, Daniel de Pablo and Lothar Winzer.
The BSSC also wishes to thank the following ESA reviewers of this standard: Jon
Brumfitt, A. Bonfiel, Fernando Aldea Montero, Hans Ranebo, Jean-Pascal Lejault,
Jose Hernandez, Jose Pizarro, Philippe Chevalley, Vicente Navarro, and the expert
reviewer, editor, Martin Soto, from Fraunhofer Institute for Experimental software En-
gineering (IESE).

Requests for clarifications, change proposals or any other comments concern-
ing this standard should be addressed to:

BSSC/ESOC Secretariat BSSC/ESTEC Secretariat
Attention of Ms M. Spada Attention of Mr J.-L. Terraillon
ESOC ESTEC
Robert Bosch Strasse 5 Postbus 299
D-64293 Darmstadt NL-2200 AG Noordwijk
Germany The Netherlands

BSSC 2005(2) Issue 1.0 17
CHAPTER 1
INTRODUCTION

Chapter 1
Introduction

1.1 Scope and Applicability
These standards present rules and recommendations about the use of the lan-

guage constructs of Java. Many books and documents describe how these features
can be used. These texts usually describe what is possible and not necessarily what
is desirable or acceptable, especially for large software engineering projects intend-
ed for mission- or safety-critical systems. This document is valid for the Java 2 v5.0
standard specification (J2SE 5.0.x) as well as for the Java Real-Time Specification
[RTSJ] as published by the Java Real-Time Experts Group.

This document provides a set of guidelines for programming in Java which are
intended to improve the overall quality and maintainability of software developed by,
or under contract to, the European Space Agency. The use of this standard should
improve consistency across different software systems developed by different pro-
gramming teams in different companies or developed in-house in the Agency.

The guidelines in this standard should be met for Java source code to fully com-
ply with this standard. The standard has no contractual implication. Contractual obli-
gations are given in individual project documents.

This document is in principle a reference document. As with other BSSC coding
standards, project managers may decide to make it applicable, particularly in the
case that a supplier does not have a suitable in-house standard.

The readers are expected to be Java programmers (related to, or doing work for
ESA) that understand very well the workings of the language.

Disclaimer: Programs and code snippets presented in this document are by no
means guaranteed to be usable as runnable code. They are only included to
demonstrate concepts outlined in the rules and guidelines.

1.2 Position of this document with respect to the ECSS-E40 and ECSS-Q80
Standards

The ECSS bundle of standards is organized around families. In particular, the
Engineering family has a dedicated number for software (40), and the Quality family
has a dedicated number for software product assurance (80).

The ECSS-E-40 Part 1B, Space Engineering - Software - Part 1: Principles and
requirements (approved 28 Nov 2003) document recalls the various software engi-
neering processes and list requirements for these processes in terms of activities
that have to be performed, as well as pieces of information that have to be produced.
ECSS-E40 1B does not address directly the coding standards, but requires that the
coding standards are defined and agreed, at various levels of the development, be-

BSSC 2005(2) Issue 1.0 18
CHAPTER 1
INTRODUCTION

tween the customer and the supplier.

In particular, the selection of this Java standard could be the answer to the fol-
lowing requirements in the ECSS-E40 1B standard:

5.2.2.1 System requirements specification, Expected Output d): Identification of
lower level software engineering standards [RB; SRR] (see ECSS- Q- 80B subclaus-
es 6.3.2 and 6.3.3);

Also of relevance, the selection of this Java standard could be the answer to the
following requirements of the ECSS-Q-80B standard (Software Product Assurance,
approved 10 Oct 2003):

6.3.3.1 Coding standards (including consistent naming conventions, and ade-
quate commentary rules) shall be specified and observed.

EXPECTED OUTPUT: Coding standards [PAF; PDR].

6.3.3.4 Coding standards shall be reviewed with the customer to ensure that
they reflect product quality requirements.

EXPECTED OUTPUT: Coding standards and description of tools [PAF; PDR].

1.3 Document Overview
This document is intended to build on the output of the Software Top-Level Ar-

chitectural Design, Design of Software Items and Coding and Testing phases
(ECSS-E-40 terminology) and follows a "top-down" approach so that guidelines can
begin to be applied as soon as detailed design of software items starts and before
any code is produced. Subsequent chapters describe the specific rules and recom-
mendations to be applied to the production of Java code.

All rules (mandatory) and recommendations (optional) are numbered for refer-
ence purposes.

All rules and recommendations have a short title and an explanation. Many
rules and recommendations are also followed by a rationale section justifying the ap-
plication of the rule. Rules and recommendations may also contain examples show-
ing how to apply them, or illustrating the consequences of not applying them.

All rules and recommendations are enclosed in boxes. Recommendations are
printed in italic type.

1.4 Glossary
Abstract class – A class that exists only as a superclass of another class and can
never be directly instantiated. In Java, an abstract class contains or inherits one or
more abstract methods or includes the abstract keyword in its definition.

Abstraction – The process and result of extracting the common or general character-
istics from a set of similar entities.

Accessor – A method that sets or gets the value of an object property or attribute.

Algorithm – A finite set of well-defined rules that gives a sequence of operations for
performing a specific task.

Architecture – A description of the organization and structure of a software system.

Argument – Data item specified as a parameter in a method call.

BSSC 2005(2) Issue 1.0 19
CHAPTER 1
INTRODUCTION

Assertion – A statement about the truth of a logical expression. In Java, a special in-
structions that checks the validity of such a statement during run-time.

Attribute – A feature within a class that describes a range of values instances of the
class may hold. A named characteristic or property of a type, class, or object.

Behavior – The activities and effects produced by an object in response to an event.

Block statement – The Java language construct that combines one or more state-
ment expressions into a single compound statement, by enclosing them in curly
braces “{...}”.

Boolean – An enumerated type whose values are true and false.

Built-in type – A data type defined as part of the language. The built-in or native
types defined by Java include the primitive types boolean, byte, char, double,
float, int, long, short, and void, and the various classes and interfaces de-
fined in the standard Java API, such as Object, String, Thread, and so forth.

Checked exception – Any exception that is not derived from
java.lang.RuntimeException or java.lang.Error, or that appears in the
throws clause of a method. A method that throws, or is a recipient of, a checked
exception must handle the exception internally or otherwise declare the exception in
its own throws clause.

Child – In a generalization relationship, the specialization of another element, the
parent.

Class – A set of objects that share the same attributes and behavior.

Client – An entity that requests a service from another entity.

Code – The implementation of particular data or a particular computer program in a
symbolic form, such as source code, object code or machine code.

Code sharing – The sharing of code by more than one class or component, e.g. by
means of implementation inheritance or delegation. See: implementation inheritance,
delegation.

Compiler – Program that translates source code statements of a high level language,
such as Java, into byte code or object code.

Component – (1) A self-contained part, combination of parts, sub-assemblies or
units, which performs a distinct function of a system. (2) A physical, replaceable part
of a system that packages implementation and provides the realization of a set of in-
terfaces. (3) A physical and discrete software entity that conforms to a set of inter-
faces.

Composition – A form of aggregation where an object is composed of other objects.

Concrete class – A class that can be directly instantiated. A concrete class has no
abstract operations. Contrast: abstract class.

Concurrency – The degree by which two or more activities occur or make progress
at the same time.

Global constant – A class variable defined as public static final.

Constraint – A semantic condition or restriction. Constraints include preconditions,
postconditions, and invariants. They may apply to a single class of objects, to rela-
tionships between classes of objects, to states, or to use cases.

Constructor – A special method that initializes a new instance of a class.

BSSC 2005(2) Issue 1.0 20
CHAPTER 1
INTRODUCTION

Container – An object whose purpose is to contain and manipulate other objects.

Contract – A clear description of the responsibilities and constraints that apply be-
tween a client and a type, class, or method.

CORBA – An industry wide standard for communication between distributed objects,
independent of their location and target language. The CORBA standard is defined
by the Object Management Group (OMG). CORBA itself is an acronym for Common
Object Request Broker Architecture.

Coupling – The degree to which two or more entities are dependent on each other.

Critical software – Software supporting a safety or dependability critical function that
if incorrect or inadvertently executed can result in catastrophic or critical conse-
quences.

Data abstraction – An abstraction denotes the essential characteristics of an object
that distinguish it from all other kinds of objects, suppressing all non-essential de-
tails. In data abstraction the non-essential details deal with the underling data repre-
sentation.

Database – A set of data, part or the whole of another set of data, consisting of at
least one file that is sufficient for a given purpose or for a given data processing sys-
tem.

Data type, – (1) A class of data characterized by the members of the class and the
operations that can be applied to them. Examples are character types and enumera-
tion types. (2) A descriptor of a set of values that lack identity and whose operations
do not have side effects.

Dependency – A relationship where the semantic characteristics of one entity rely
upon and constrain the semantic characteristics of another entity.

Design pattern – A documented solution to a commonly encountered design prob-
lem. In general, a design pattern presents a problem, followed by a description of its
solution in a given context and programming language.

Destructor – A method that is executed when the object is garbage collected (auto-
matically or manually)

Documentation comment – A Java comment that begins with a “/**” and ends with
“*/”, and contains a description and special tags that are parsed by the Javadoc util-
ity to produce documentation.

Domain – An area of expertise, knowledge, or activity.

Dynamic loading (of classes) – The loading of classes dynamically (at run time)
when they are first referenced by an application. The desktop Java environment, for
example, provides a class loader capable of finding and loading a named class ap-
pearing in any of a prescribed list of locations, which may be either local or remote.
In real-time systems, dynamic class loading is generally not supported or permitted.

Encapsulation – The degree to which an appropriate mechanism is used to hide the
internal data, structure, and implementation of an object or other entity.

Enumeration – A type that defines a list of named values that make up the allowable
range for values of that type.

Error – Discrepancy between a computed, observed or measured value or condition
and the true, specified or theoretically correct value or condition.

Factor – The act of reorganizing one or more types or classes by extracting respon-

BSSC 2005(2) Issue 1.0 21
CHAPTER 1
INTRODUCTION

sibilities from existing classes and synthesizing new classes to handle these respon-
sibilities.

Field – An instance variable or data member of an object.

Fundamental data type – A type that typically requires only one implementation and
is commonly used to construct other, more useful types. Dates, complex numbers,
linked-lists, and vectors are examples of common fundamental data types.

Hard real-time system – A system that guarantees that time-critical actions will al-
ways be performed at the specified time. Hard real time systems rely on timing con-
straints being proved using theoretical static analysis techniques prior to deployment.

Implementation – The concrete realization of a contract defined by a type, abstract
class, or interface. The actual code.

Implementation class – A concrete class that provides an implementation for a type,
abstract class, or interface.

Implementation inheritance – The action or mechanism by which a subclass inherits
the implementation and interface from one or more parent classes.

Inheritance – A mechanism by which more specific elements incorporate (inherit) the
structure and behavior of more general elements. Inheritance can be used to support
generalization, or misused to support only code sharing, without attempting to follow
behavioral subtyping rules.

Instance – The concrete representation of an object.

Instantiation – The act of allocating and initializing an object from a class.

Interface – A definition of the features accessible to clients of a class. Interfaces are
distinct from classes, which may also contain methods, associations and modifiable
attributes.

Note: The UML definition of interface differs slightly from that defined by Java in that
Java interfaces may contain constant fields, while UML interfaces may contain only
operations.

Interface inheritance – The inheritance of the interface of a more specific element.
Does not include inheritance of the implementation.

Interrupt – A suspension of a task, such as the execution of a computer program,
caused by an event external to that task, and performed in such a way that the task
can be resumed.

Invariant – An expression that describes the well-defined, legal states of an object.

Keyword – A word used to mark language constructs in the syntax definition of a
programming language.

Lazy initialization – The act of delaying the initialization of a data value until the first
use or access of the data value.

Local variable – A variable whose scope is restricted to a single compound state-
ment.

Method – The implementation of an operation. A method specifies the algorithm or
procedure associated with an operation.

Monitoring – Functionality within a system which is designed to detect anomalous
behavior of that system.

Object – An entity with a well-defined boundary and identity that encapsulates state

BSSC 2005(2) Issue 1.0 22
CHAPTER 1
INTRODUCTION

and behavior. State is represented by attributes and relationships; behavior is repre-
sented by operations and methods, and state machines.

Operation – A service that can be requested of an object. An operation corresponds
to an abstract method declaration in Java. It does not define an associated imple-
mentation.

Overriding – The redefinition of an operation or method in a subclass.

Package – A mechanism for organizing and naming a collection of related classes.

Package access – The default access control characteristic applied in Java to inter-
faces, classes, and class members.

Parameter – A variable that is bound to an argument value passed into a method.

Parent – In an inheritance relationship, the generalization of another element, pro-
ducing the child.

Pattern – A documented solution to a commonly encountered analysis or design
problem. Each pattern documents a single solution to the problem in a given context.

Polymorphism – The concept or mechanism by which objects of different types in-
herit the responsibility for implementing the same operation, but respond differently
to the invocation of that operation.

Polymorphic – A trait or characteristic of an object whereby that object can appear as
several different types at the same time.

Postcondition – A constraint or assertion that must hold true following the completion
of an operation.

Precondition – A constraint or assertion that must hold true at the start of an opera-
tion.

Primitive type – A basic language type that represents a pure value and has no dis-
tinct identity as an object. The primitives provided by Java include boolean, byte,
char, double, float, int, long, and short.

Private access – An access control characteristic applied to class members. Class
members declared with the private access modifier are only accessible to code in
the same class and are not inherited by subclasses.

Property – A named characteristic or attribute of a type, class, or object.

Protected access – An access control characteristic applied to class members. Class
members declared with the protected access modifier are accessible to code in
the same class and package, and from code in subclasses, and they are inherited by
subclasses.

Public access – An access control characteristic applied to interfaces, classes, and
class members. Class members declared with the public access modifier are ac-
cessible anywhere the class is accessible and are inherited by subclasses. Classes
and interfaces declared with the public access modifier are visible, accessible and
heritable outside of a package.

Relationship – A semantic connection among model elements. Examples of relation-
ships include associations and generalizations.

Responsibility – A purpose or obligation assigned to a type.

Robustness – The extent to which software can continue to operate correctly despite
of invalid inputs.

BSSC 2005(2) Issue 1.0 23
CHAPTER 1
INTRODUCTION

Service – One or more operations provided by a type, class, or object to accomplish
useful work on behalf of one or more clients.

Signature – The name, parameter types, return type, and possible exceptions asso-
ciated with an operation.

Soft real-time system – A system in which an action performed at the wrong time (ei-
ther too early or too late) is considered acceptable but not desirable. Soft real-time
systems rely on empirical (statistical) measurements and heuristic enforcement of
resource budgets to improve the likelihood of complying with timing constraints.

Software – A set of computer programs, procedures, documentation and their asso-
ciated data.

Source code – Code written in a source languages, such as assembly language
and/or high level language, in a machine-readable form for input to an assembler or
a compiler.

State – A condition or situation during the life of an object during which it satisfies
some condition, performs some activity, or waits for some event.

Static analyzer – A software tool that helps to reveal certain properties of a program
without executing the program.

Subclass – In a generalization relationship, the specialization of another class; the
so-called superclass or parent class.

Subclass – A class that inherits attributes and methods from another class.

Subinterface – The specialization of another interface.

Subtype – The more specific type in a specialization-generalization relationship.

Superclass – In a generalization relationship, the generalization of another class; the
subclass.

Synchronization – The process or mechanism used to preserve the invariant states
of a program or object in the presence of multiple threads.

Synchronized – A characteristic of a Java method or a block of code. A synchronized
method or block allows only one thread at a time to execute within the critical section
defined by that method or block.

System – A collection of hardware and software components organized to accom-
plish a specific function or set of functions.

Testing – The process of exercising a system or system component to verify that it
satisfies specified requirements and to detect errors.

Traceability – The evidence of an association between items, such as between pro-
cess outputs, between an output and its originating process, or between a require-
ment and its implementation.

Thread – A single flow of control flow within a process that executes a sequence of
instructions in an independent execution context.

Type – Defines the common responsibilities , behavior, and operations associated
with a set of similar objects. A type does not define an implementation.

Unchecked exception – Any exception that is derived from
java.lang.RunTimeException or java.lang.Error. A method that throws, or
is a recipient of, an unchecked exception is not required to handle the exception or
declare the exception in its throws clause.

BSSC 2005(2) Issue 1.0 24
CHAPTER 1
INTRODUCTION

Variable – A typed, named container for holding object references or data values.

Visibility – The degree to which an entity may be accessed from outside of a particu-
lar scope.

1.5 Acronyms
API Application Programming Interface

ASCII American Standard Code for Information Interchange

AWT Abstract Window Toolkit

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

ECSS European Cooperation for Space Standardisation

EJB Enterprise JavaBeans

GC Garbage Collection

GUI Graphical User Interface

HRT Hard Real-Time

HS Hot Spot (compiling)

HTML Hypertext Mark-up Language

IDE Integrated Development Environment

I/O Input/Output

JAR Java Archive

JCE Java Cryptography Extension

JCP Java Community Process

JDBC Java Data Base Connectivity

JDK Java Development Kit

J2EE Java Enterprise Edition

JNI Java Native Interface

J2ME Java 2 Micro Edition

J2SE Java Standard Edition

JSSE Java Secure Sockets Extension

JVM Java Virtual Machine

OO Object-oriented

ORB Object Request Broker

PCP Priority Ceiling Protocol

POSIX Portable Operating System Interface - UNIX

RMI Remote Method Invocation

R/T Real Time

BSSC 2005(2) Issue 1.0 25
CHAPTER 1
INTRODUCTION

RTOS Real Time Operating System

RTSJ Real Time Specification for Java

SSL Secure Sockets Layer

SWT Standard Widget Library

UML Unified Modeling Language

BSSC 2005(2) Issue 1.0 26
CHAPTER 2
INSTALLATION, BUILD AND UPDATES

Chapter 2
Installation, Build and Updates

2.1 Introduction
It is important for every software development project to provide common and

uniform build and update procedures, and to allow for convenient and reliable de-
ployment and installation of its products. The Java platform offers a number of facili-
ties that directly address these essential project needs. This chapter is concerned
with how to make better use of them.

2.2 Apache Ant
Apache Ant [ANT] (or simply Ant) is a Java based build tool intended to auto-

mate the compilation of software systems, as well as many other related tasks. Ant
based compilation systems are guaranteed to run on any Java compliant platform.

Rule 1: Use the Apache Ant tool to automatically build your project.

Rationale
Ant allows to create portable compilation systems, thus making it possible for

the development activities of a project to take place in heterogeneous software and
hardware platforms.

Recommendation 1: Use the Ant tool to automate as many additional project tasks
as possible.

Rationale
Apart from supporting the compilation process, Ant makes it possible to auto-

mate a variety of software quality assurance, installation, distribution, and mainte-
nance related tasks, like running automated test suites, creating packaged files for
distribution, and generating documentation, among many others.

Use Ant to automate as many such tasks as possible.

2.3 Preferences

Recommendation 2: Use the Java Preferences API to store and retrieve all run-
time configuration data.

 Run-time configuration data is all data necessary to adapt a software applica-
tion to the needs of different users and environments. Use the Java Preferences API
[SUNPref] to store all configuration related data.

BSSC 2005(2) Issue 1.0 27
CHAPTER 2
INSTALLATION, BUILD AND UPDATES

Rationale
The Preferences API manages configuration data in a simple, completely plat-

form independent way. In particular, it offers a number of advantages with respect to
using property files, which is the traditional approach to handle this problem.

2.4 Software Distribution

Rule 2: When distributing a project, package all necessary class and resource files
in a jar file.

Jar files are a standard way to distribute Java programs. In order to distribute a
program, package all relevant class and resource files (icons, internal read-only data
files) in a jar file.

Rationale
A number of problems can arise when copying a program's run-time files to a

different hardware or software platform. Such problems can be already visible when
attempting to copy the files, or may only become evident when running the software
later on:

• File name length: File name length restrictions in some systems may cause file
names to be incorrectly copied, or may generate naming conflicts because of
name truncation.

• Upper- and lower-case distinctions: The way a system manages upper- and
lower-case in file names could cause conflicts when files are transferred.

• Special file names: Some platforms assign special meaning to certain file
names, such as “LPT” or “con”.

• Special characters: Each platform limits the set of characters accepted in file
names to a different set.

Using a jar file avoids all of these problems, because jar files have an internal
file naming system that is completely independent from that of the underlying operat-
ing system.

2.5 Implementation Files

Rule 3: Define only one class or interface per .java file.

Rationale
Doing so simplifies maintenance.

BSSC 2005(2) Issue 1.0 28
CHAPTER 3
SOURCE CODE STRUCTURE

Chapter 3
Source Code Structure

Uniform source code structure and formatting are fundamental for an adequate
collaboration between programmers. The rules and recommendations in this chapter
define a consistent code formatting style to be applied in all ESA related software de-
velopment projects.

Code formatting issues are often contentious, probably because they are mainly
a matter of taste. Although this document cannot fit everyone's personal prefer-
ences, it specifies a reasonable formatting style, intended to be generally readable
and relatively simple to follow while writing code. Additionally, since most of the rules
and recommendations in this chapter are based on existing, widely known standards
(like those from Sun Microsystems [SUNCode]) many members of the Java develop-
ment community are likely to already be familiar with them.

The sections in this chapter address a variety of code elements, starting with
the bigger and more general ones, and going down to the smaller, more detailed
ones.

3.1 Implementation Files

Rule 4: Use the following structure for all implementation files:

• Start with the beginning comments.

• Follow with package and import statements.

• Put class and interface definitions at the end of the file.

Rationale
Formatting conventions are necessary to achieve code uniformity.

Recommendation 3: Use a standard template or utility program to provide a starting
point for implementation files.

Rationale
Introducing the elements specified by this standard or by any additional project

specific standards in every implementation file can be a burden for the programmer.
Copying these elements from a standard, project-wide template file usually simplifies
the task of creating new files and makes it more consistent.

An additional possibility is to provide a utility program or script, which can gener-
ate an initial implementation file, based on project-wide information and possibly in-
formation provided by the programmer or obtained from the programming environ-

BSSC 2005(2) Issue 1.0 29
CHAPTER 3
SOURCE CODE STRUCTURE

ment. Such a program could save the programmer a number of additional cus-
tomization steps that would be needed when using a simple template file.

Rule 5: Do not use tab characters in implementation files, use plain spaces instead.

Rationale
Interpretation of tab characters varies across operating systems and program-

ming environments. Code that appears to be correctly formatted when displayed in
the original editing environment can be virtually impossible to read when moved to
an environment that interprets tab characters in a different way.

To avoid this problem, use spaces instead of tabs to indent and align source
code. Most modern programming environments offer options to do this automatically.
Otherwise it can be done manually.

Rule 6: Use the following order to declare members of a class:

• Class variables (declared static).

• Instance variables.

• Constructors (at least one).

• finalize method (destructor) if necessary.

• Class methods (declared static).

• Methods:

• set/get
• Other methods

Additionally, inside each one of these groups, declare members with a higher
visibility first. That is, start with public members, continue with package visible
members (not qualified), move to protected members, and end with private
members.

Rationale
Formatting conventions are necessary to achieve code uniformity.

3.2 General Code Indentation Rules
This section contains some rules and recommendations that apply to all code

elements. They are intended to be consistent with Sun Microsystems's Java Coding
Conventions [SUNCode].

Rule 7: Use four spaces of indentation.

When indenting the code inside declaration and control structures, always use
four additional spaces with respect to the previous level. More specific rules and rec-
ommendations in this document are always consistent with this general convention.

BSSC 2005(2) Issue 1.0 30
CHAPTER 3
SOURCE CODE STRUCTURE

Rationale
Formatting conventions are necessary to achieve code uniformity.

Recommendation 4: Avoid lines longer than 80 characters.

Rationale
Shorter lines are easier to read. Additionally, utility programs dealing with

source code, like text editors and code pretty printers, may have trouble dealing with
excessively long lines.

Recommendation 5: When breaking long lines, follow these guidelines:

• Break after commas.

• Break before operators.

• Prefer breaking between large high-level subexpressions to breaking between
smaller lower-level subexpressions.

• Align the text in a new line, with the beginning of the expression at the same
syntactical level on the previous line.

• If the above guidelines lead to confusing or cumbersome formatting, indent the
second line 8 spaces instead.

Rationale
These guidelines correspond to commonly used typographical conventions,

which are generally accepted to improve readability.

Example

• Break after commas. Prefer
system.out.printline(final_time,
 (final_time – initial_time) * 4);
to
system.out.printline(final_time, (final_time –
 initial_time) * 4);

• Break before operators. Prefer
final_price = basic_price * tax_rate
 + initial_price;
(break before “+”) to
final_price = basic_price * tax_rate +
 initial_price;
(break after “+”.)

• Prefer breaking between large high-level subexpressions to breaking between
smaller lower-level subexpressions:
pos = pos0 + speed * time +
 (acceleration * time * time) / 2;

BSSC 2005(2) Issue 1.0 31
CHAPTER 3
SOURCE CODE STRUCTURE

should be preferred to
pos = pos0 + speed * time + (acceleration * time
 * time) / 2;

• Align the text in a new line, with the beginning of the expression at the same
syntactical level on the previous line. Prefer
self.getClientList().retrieve(baseClient – processCount
 + offset);
to
self.getClientList().retrieve(baseClient – processCount
 + offset);

• If the above guidelines lead to confusing or cumbersome formatting, indent the
second line 8 spaces instead. Prefer:
members.getMemberByName(memberName).store(
 self.database, self.getPriority() + priorityIncrease);
to
members.getMemberByName(memberName).store(self.database,
 self.getPriority() +
 priorityIncrease);

3.3 Definitions

Rule 8: Format class and interface definitions according to the following model:

class Sample extends Object
{
 int ivar1;
 int ivar2;
 Sample(int i, int j)
 {
 ivar1 = i;
 ivar2 = j;
 } // end method
 int emptyMethod() {}
 ...
} // end class
Some remarks about the previous model:

• Leave no space between a method name and the following parenthesis “(“.

• The open brace “{“ is put on its own line (just below the declaration statement)
and is alligned with the end brace [GNUJAVA] Note this differs from the SUN
guideline [SUNCode].

• The closing brace “}” starts a line by itself indented to match its corresponding
opening statement, except when it is a null statement in which case, the “}”
should appear immediately after the “{“.

• Methods are separated by a blank line.

BSSC 2005(2) Issue 1.0 32
CHAPTER 3
SOURCE CODE STRUCTURE

Rationale
Formatting conventions are necessary to achieve code uniformity.

Following the GNU convention for bracing style makes it more easier and quick-
er to recognize code structure. This is particularly true in the case of deep nesting.
Consistency in brace placement remains even in the face of line breaks in long dec-
larations. This is particularly good for code inspection.

Rule 9: Put single variable definitions in separate lines.

Rationale
Defining many variables in a single line, makes it more difficult to change the

type of one of the declarations without changing the remaining ones. This could lead
to inadvertently introducing programming errors.

Example
Instead of writing
int counter, total; // Wrong!
write
int counter;
int total;

3.4 Statements

Rule 10: Put single statements in separate lines.

Rationale
Many statements in a single line are harder to read.

Example
Instead of writing
counter = initial; counter++; // Wrong!
write
counter = initial;
counter++;

Rule 11: Format compound statements according to the following guidelines:

• Put the opening brace “{“ at the end of the opening line for the compound state-
ment.

• Indent enclosed statements one level (four spaces) with respect to the com-
pound statements.

• Put the closing brace “}” in a line of its own, with the same level of indentation
of the opening line.

BSSC 2005(2) Issue 1.0 33
CHAPTER 3
SOURCE CODE STRUCTURE

Rationale
Formatting conventions are necessary to achieve code uniformity.

Rule 12: Always put braces around statements contained in control structures.

Statements hanging from control structures like if, while, for, and others
shall always have braces surrounding them, even if the block contains a single state-
ment.

While the language enables you to use simple, non-block statements as the
body of these constructs, always use a block statement in such situations.

Rationale
Block statements reduce the ambiguity that often arises when control constructs

are nested, and provide a mechanism for organizing the code for improved readabili-
ty.

This practice helps to avoid programming errors resulting from interpreting the
program as the indentation suggests, and not as the compiler parses it. For exam-
ple, a programmer wanting to modify the incorrect example above could change it
into

if (position < size)
 position++;
 remaining--;

to mean that both (increment and decrement) statements should be executed when
the condition is true. Since the indentation is consistent with his intent, it could be dif-
ficult for him to spot the lack of the braces. This problem would not have arisen, had
the program been written as in the correct example above.

Example
Instead of writing
if (position < size) // Wrong, add braces!
 position++;
write
if (position < size)
{
 position++;
} // end if

Rule 13: Format if-else statements according to the following models:

Simple branch if statement:
if (condition)
{
 statements;
} // end if
if statement with else:
if (condition)
{
 statements;

BSSC 2005(2) Issue 1.0 34
CHAPTER 3
SOURCE CODE STRUCTURE

} // end if
else
{
 statements;
} // end else
Multi-branch if statement:
if (condition)
{
 statements;
} // end if
else if (condition)
{
 statements;
} // end if
else
{
 statements;
} // end else
The indentation of if statements with an else clause and of multi-branch if

statements differs slightly from that recommended by the SUN standard [SUNCode].
Putting else clauses in a separate line increases the readability of the whole struc-
ture.

Rationale
Formatting conventions are necessary to achieve code uniformity.

Rule 14: Format for statements according to the following model:

for (initialization; condition; update)
{
 statements;
} // end for
for statements without a body should be formatted as follows:
for (initialization; condition; update);
(note the semicolon “;” at the end.)

Rationale
Formatting conventions are necessary to achieve code uniformity.

Rule 15: Format while statements according to the following model:

while (condition)
{
 statements;
} // end while

Rationale
Formatting conventions are necessary to achieve code uniformity.

BSSC 2005(2) Issue 1.0 35
CHAPTER 3
SOURCE CODE STRUCTURE

Rule 16: Format do-while statements according to the following model:

do
{
 statements;
} while (condition);

Rationale
Formatting conventions are necessary to achieve code uniformity.

Rule 17: Format switch statements according to the following model:

switch (condition)
{
case CASE1:
 statements;
 /* falls through */
case CASE2:
 statements;
 break;
case CASE3:
 statements;
 break;
default:
 statements;
 break;
} // end switch

• Cases without a break statement should include a /* falls through */
commentary to indicate explicitly that they fall through to the next case.

• All switch statements should include a default case.

• The last case in the switch statement should also end with a break state-
ment.

Rationale
Formatting conventions are necessary to achieve code uniformity.

Rule 18: Format try-catch statements according to the following model:

Simple try statement:
try
{
 statements;
} // end try
catch (ExceptionClass e)
{
 statements;
} // end catch
try statement with finally clause:
try

BSSC 2005(2) Issue 1.0 36
CHAPTER 3
SOURCE CODE STRUCTURE

{
 statements;
} // end try
catch (ExceptionClass e)
{
 statements;
} // end catch
finally
{
 statements;
} // end method

Rationale
Formatting conventions are necessary to achieve code uniformity.

Recommendation 6: Avoid parentheses around the return values of return state-
ments.

Example
Instead of writing
return(total);

or
return (total);

simply write
return total;

Rationale
Formatting conventions are necessary to achieve code uniformity.

3.5 Blank Lines and Spaces

Rule 19: Leave two blank lines:

• Between sections of a source file.

• Between class and interface definitions.

Rationale
Blank lines in the specified places help identify the general structure of an im-

plementation file.

Rule 20: Leave one blank line:

• Between methods.

• Between the local variable definitions in a method or compound statement and
its first statement.

BSSC 2005(2) Issue 1.0 37
CHAPTER 3
SOURCE CODE STRUCTURE

Rationale
Blank lines in the specified places help identify the structure of class and

method definitions.

Recommendation 7: Separate groups of statements in a method using single blank
lines.

Statements in a method can usually be broken into groups that perform concep-
tually separate tasks (i.e. basic steps in an algorithm). It is a good idea to separate
such groups with single blank lines to make them more obvious.

Rationale
This practice helps to better communicate the intent of the program.

Example
void printAttribList(Attributes atts)
{
 int length = atts.getLength();
 int i;
 for (i = 0; i < length; i++)
 {
 if (SAXHelpers.isXMLAttrib(atts, i, "space"))

 {
 // Omit xml:space declarations in HTML.
 break;
 } // end if
 // Find a suitable attribute name.
 String name = atts.getQName(i);
 if (name == null || name.equals(""))
 {
 name = atts.getLocalName(i);
 } // end if
 ti.printMarkup(" " + name + "=\"");
 // Print the attribute value, but don't compress spaces.
 ti.escapeText(atts.getValue(i));
 ti.printMarkup("\"");
 } // end for
} // end method

Rule 21: Always use a space character:

• After commas in argument lists.

• Before and after all binary operators, except for the “.” operator.

• After the semicolons (“;”) separating the expressions in a for statement.

• After casts in expressions.

BSSC 2005(2) Issue 1.0 38
CHAPTER 3
SOURCE CODE STRUCTURE

Rationale
Space characters in the specified places help readability:

• They are located at the end or around certain syntactical constructs, and thus
help to identify them visually.

• They are consistent with common typographical conventions that are well
known to improve readability.

BSSC 2005(2) Issue 1.0 39
CHAPTER 4
NAMING

Chapter 4
Naming

4.1 Introduction
Projects often undergo periods of fast development, where developers concen-

trate on implementing functionality, and leave other important, but not so urgent
tasks like documentation for a later time. A key implication of this fact is that often,
the only part of an overall software product that is up to date is its source code. For
this reason, clear and self-documenting code is always very valuable. Choosing de-
scriptive program identifiers is one important step to achieve such code.

This chapter is concerned with issues of naming within Java source code. The
Java programming language allows long and meaningful names, consistent with
what modern software engineering practices encourage. Since names are used in a
variety of contexts and scopes, this chapter covers the various naming situations
starting with the more general and wider ones and going down to more specific and
local ones.

4.2 General Naming Conventions
The rules and recommendations in this section apply to all types of identifiers

possible in a Java program.

Rule 22: Use American English for identifiers.

Identifiers shall correspond to English words or sentences, using the American
spelling (i.e. “Color”, “initialize”, “Serializable”, instead of “Colour”,
“initialise” or “Serialisable”.)

Rationale
Mixed American and British spelling can result in identifiers being mistyped. Ad-

ditionally, the Java standard library uses American spelling for its identifiers.

Rule 23: Restrict identifiers to the ASCII character set.

Rationale
Files containing non-ASCII identifiers may not display properly in some plat-

forms and may be hard to edit properly.

Recommendation 8: Pick identifiers that accurately describe the corresponding pro-
gram entity.

While coding, spend some time looking for identifiers that accurately and con-

BSSC 2005(2) Issue 1.0 40
CHAPTER 4
NAMING

cisely describe the program entity (class, package, instance, local variable, etc.) in
question.

Names should be short, yet meaningful. The choice of a name should be
mnemonic, i.e., designed to indicate to the casual observer the intent of its use. One-
character variable names should be avoided, except for temporary “throwaway" vari-
ables. Common names for temporary variables are i, j, k, m, and n for integers; c,
d, and e for characters.

Rationale
Naming conventions are necessary to achieve code uniformity.

Recommendation 9: Use terminology applicable to the domain.

While choosing identifiers, rely as much as possible on accepted, domain spe-
cific terminology.

Rationale
Doing so can facilitate communication between programmers and other profes-

sionals involved in a project. It also helps to produce more concise and accurate
identifiers.

Recommendation 10: Avoid long (e.g. more than 20 characters) identifiers.

While trying to keep names descriptive, avoid using very long identifiers.

Rationale
Extremely long identifiers may be hard to remember, are difficult to type, and

may make code harder to format properly.

Recommendation 11: Use abbreviations sparingly and consistently.

Although abbreviating words in identifiers should be generally avoided, it is
sometimes necessary to do it in order to prevent identifiers from becoming exces-
sively long. In such a case, ensure that the same abbreviation is always used for the
same term.

Rationale
Naming conventions are necessary to achieve code uniformity.

Rule 24: Avoid names that differ only in case.

Never use in the same namespace identifiers that have the same letters, but
that are capitalized in different ways. As an additional recommendation, generally
avoid putting similar identifiers in the same namespace.

Rationale
Similar names in a single namespace easily lead to coding errors.

BSSC 2005(2) Issue 1.0 41
CHAPTER 4
NAMING

Rule 25: Capitalize the first letter of standard acronyms.

When using standard acronyms in identifiers, capitalize only the first letter, not
the whole acronym, even if such acronym is usually written in full upper-case.

Example
Use XmlFile, auxiliaryRmiServer and mainOdbcConnection instead of

XMLFile, auxiliaryRMIServer or mainODBCConnection.

Rationale
Doing this allows for clearer separation of words within the name, making identi-

fiers easier to read. When only the first letter is capitalized, words are more easily
distinguished without any one word being dominant.

Rule 26: Do not hide declarations.

Do not declare names in one scope that hide names declared in a wider scope.
Pick different names as necessary.

Rationale
Errors resulting from hiding a declaration, but still trying to directly refer to the

declared element, may be very difficult to spot.

4.3 Package Names

Rule 27: Use the reversed, lower-case form of your organization’s Internet domain
name as the root qualifier for your package names.

Whenever possible, any package name should include the lower-case domain
name of the originating organization, in reverse order.

In the case of ESA, however, names beginning with the components “int.esa”
are not possible, since “int” is a reserved word in the Java programming language
and will be rejected by compilers and other tools compliant with the language defini-
tion. The recommended package naming schema for packages developed by ESA
projects is

esa.projectname.applicationname.componentname

Additionally, the “java” and “javax” package name components must not be
used because they are reserved for the standard libraries and for extension pack-
ages provided directly by Sun Microsystems.

Rationale
Naming conventions are necessary to achieve code uniformity.

Example
esa.galileo.ipf.ifcalculator
esa.herschel.mps.scheduler

BSSC 2005(2) Issue 1.0 42
CHAPTER 4
NAMING

Rule 28: Use a single, lower-case word as the root name of each package.

The qualified portion of a package name should consist of a single, lower-case
word that clearly captures the purpose and utility of the package. A package name
may consist of a meaningful abbreviation.

Rationale
Naming conventions are necessary to achieve code uniformity.

4.4 Type, Class and Interface Names

Rule 29: Capitalize the first letter of each word that appears in a class or interface
name.

Rationale
The capitalization provides a visual cue for separating the individual words with-

in each name. The leading capital letter allows for differentiating between class or in-
terface names and variable names.

Example
public class PrintStream extends FilterOutputStream
{
...
} // end class
public interface ActionListener extends EventListener
{
...
} // end interface

Rule 30: Use nouns or adjectives when naming interfaces.

Use nouns to name interfaces that act as service declarations. Use adjectives
to name interfaces that act as descriptions of capabilities. The latter are frequently
named with adjectives formed by tacking an “able” or “ible” suffix onto the end of a
verb.

Rationale
An interface constitutes a declaration of the services provided by an object in

which case a noun is an appropriate name, or it constitutes a description of the capa-
bilities of an object, in which case an adjective is an appropriate name.

Example
An interface declaring a service:
public interface ActionListener
{
 public void actionPerformed(ActionEvent e);
} // end interface
Interfaces declaring object capabilities:

BSSC 2005(2) Issue 1.0 43
CHAPTER 4
NAMING

public interface Runnable
{
 public void run();
} // end interface
public interface Accessible
{
 public Context getContext();
} // end interface

Rule 31: Use nouns when naming classes.

Rationale
Classes represent categories of objects of the real world. Such objects are nor-

mally referred to using nouns.

Example
Some examples from the Java standard class library:
SocketFactory
KerberosTicket
MediaName
Modifier
StringContent
Time

Rule 32: Pluralize the names of classes that group related attributes, static services
or constants.

Give classes whose instances group related attributes, static services, or con-
stants a name that corresponds to the plural form of the attribute, service, or con-
stant type defined by the class.

Rationale
The plural form makes it clear that the instances of the class are collections.

Example
Some examples from the Java standard class library:
BasicAttributes
LifespanPolicyOperations
PageRanges
RenderingHints

BSSC 2005(2) Issue 1.0 44
CHAPTER 4
NAMING

4.5 Method Names

Rule 33: Use lower-case for the first word and capitalize only the first letter of each
subsequent word that appears in a method name.

Rationale
The capitalization provides a visual cue for separating the individual words with-

in each name. The leading lower-case letter allows for differentiating between a
method and a constructor invocation.

Example
insertElement
computeTime
save
extractData

Rule 34: Use verbs in imperative form to name methods that:

• Modify the corresponding object (modifier methods).

• Have border effects (i.e., displaying information, writing to or reading from a
storage device, changing the state of a peripheral, etc.)

Rationale
Modifiers and methods with border effects perform actions, which are better de-

scribed by verbs.

Example
Modifier methods:
insert
projectOrthogonal
deleteRepeated
Methods with border effects:
save
drawLine
sendMessage

Rule 35: Use verbs in present third person to name analyzer methods returning a
boolean value.

Particularly, for classes implementing JavaBeans using the verb “is” may be
necessary.

Rationale
Methods returning a boolean value test some characteristic of the correspond-

ing object.

BSSC 2005(2) Issue 1.0 45
CHAPTER 4
NAMING

Example
isValid
hasChild
canPrint

Rule 36: Use nouns to name analyzer methods returning a non-boolean value, or,
alternatively, name them using the verb “get”.

Use the “get” style if:

• The class implements a Java Bean.

• There is a corresponding “set” method.

• The result of the method corresponds directly to the value of an instance vari-
able.

Rationale
The “get” convention is widely accepted by the Java community.

Example
totalTime
getTotalTime
getLength
validSuccesors

Rule 37: Name methods setting properties of an object (set methods) using the
verb “set”.

Use this convention when:

• The class implements a Java Bean.

• There is a corresponding “get” method.

• The method's purpose is to set the value of an instance variable.

Rationale
The “set” convention is widely accepted by the Java community.

4.6 Variable Names

Rule 38: Use nouns to name variables and attributes.

A variable name must correspond to an English noun, potentially accompanied
by additional words that further describe or clarify it.

Rationale
Variables represent either entities from the real world or digital entities used in-

side a program. In both cases, those entities are referred to in natural language us-
ing nouns.

BSSC 2005(2) Issue 1.0 46
CHAPTER 4
NAMING

Example
shippingAddress
counter
currentPosition
maximalPower

4.6.1 Parameter Names

Rule 39: When a constructor or “set” method assigns a parameter to a field, give
that parameter the same name as the field.

Rationale
While hiding the names of instance variables with local variables is generally

poor style, this particular case brings some benefits. Using the same name relieves
the programmer of the responsibility of coming up with a different name. It also pro-
vides a clue to the reader that the parameter value is destined for assignment to the
field of the same name.

Example
class TestFacility
{
 private String name;
 public TestFacility(String name)
 {
 this.name = name;
 } // end method
 public setName (String name)
 {
 this.name = name;
 } // end method
} // end class

4.6.2 Instance Variable Names

Rule 40: Qualify instance variable references with this to distinguish them from lo-
cal variables.

Rationale
To facilitate distinguishing between local and instance variables, always qualify

field variables using the this keyword.

Example
public class AtomicAdder
{
 private int count;

BSSC 2005(2) Issue 1.0 47
CHAPTER 4
NAMING

 public AtomicAdder(int count)
 {
 this.count=count;
 } // end method
 public synchronized int fetchAndAdd(int value)
 {
 int temp = this.count;
 this.count += value;
 return temp;
 } // end method
 ...
} // end class

4.7 Constant Names

Rule 41: Use upper-case letters for each word and separate each pair of words with
an underscore when naming Java constants.

Rationale
The capitalization of constant names distinguishes them from other non-final

variables:

Example
class Byte
{
 public static final byte MAX_VALUE = +127;
 public static final byte MIN_VALUE = 0;
 ...
} // end class

BSSC 2005(2) Issue 1.0 48
CHAPTER 5
DOCUMENTATION AND COMMENTING CONVENTIONS

Chapter 5
Documentation and Commenting Conventions

5.1 Introduction
As discussed elsewhere in this document, the final and most reliable source of

information about a project is its own source code. However, source code is often
difficult to interpret on its own, thus making it necessary to write additional explanato-
ry documentation. A very practical way to keep such documentation are code com-
ments. Documentation in comments is generally easier to maintain, since it is locat-
ed closer to the documented code. It also makes it more practical to maintain the
code itself, because it reduces the need to refer to separate documents when under-
standing it.

Java developers have an additional reason to document their code using com-
ments: the Javadoc tool [SUNDoc]. Javadoc takes as input a set of Java source
files, extracts information from especially formatted comments in them, and pro-
duces well structured, cross-referenced documentation as a result. The Javadoc ap-
proach combines the practicality of keeping documentation in code comments with
the convenience of having separate, high level reference documentation for the code
interfaces in a system.

The rules and recommendations in this chapter are concerned with how to write
appropriate source level documentation for Java. Particularly, many of the rules and
recommendations have to do with how to write comments in such a way that the
Javadoc tool can produce high quality reference documentation from them.

5.2 Comment Types
The Java programming language supports three comment types:

• A one-line or end-line comment that begins with “//” and continues through to
the end of the line.

• A standard, or C-style, comment, which starts with “/*” and ends with “*/”.

• A documentation comment that starts with “/**” and ends with “*/”. The
Javadoc tool processes only comments of this type.

5.3 Documenting the Detailed Design

Recommendation 12: Use documentation comments to describe programming in-
terfaces before implementing them.

Rationale
The detailed design of a class interface (as opposite to the detailed design of its

BSSC 2005(2) Issue 1.0 49
CHAPTER 5
DOCUMENTATION AND COMMENTING CONVENTIONS

implementation) consists of the method signatures, together with their specifications.
An excellent way to document such a design is to write a skeleton class definition,
consisting of the method declarations (with no code in their bodies) and correspond-
ing documentation comments specifying them. The best time to write this documen-
tation is early in the development process, while the purpose and rationale for intro-
ducing the new classes or interfaces is still fresh in your mind.

Following this practice makes it possible to run Javadoc in the earliest stages of
implementation, to produce documents that can be used for reviewing the design as
well as for guiding the developers implementing it. Additionally, this documentation
constitutes a solid basis for any final API reference documentation that may need to
be produced.

5.4 Javadoc General Descriptions

Rule 42: Provide a summary description and overview for each application or group
of packages.

The Javadoc utility provides a mechanism for including a package-independent
overview description in the documentation it generates. Use this capability to provide
an overview description for each application or group of related packages you cre-
ate.

The Javadoc documentation [SUNDoc] explains how to make use of this fea-
ture.

Rationale
Adequate overview documentation is fundamental for program comprehension.

Rule 43: Provide a summary description and overview for each package.

The Javadoc utility provides a mechanism for including package descriptions in
the documentation it generates. Use this capability to provide a summary description
and overview for each package you create.

The Javadoc documentation [SUNDoc] explains how to make use of this fea-
ture.

Rationale
Adequate overview documentation is fundamental for program comprehension.

5.5 Javadoc Comments

Rule 44: Use documentation comments to describe the programming interface.

Place documentation comments in front of any class, interface, method, con-
structor, or field declaration that appears in your code.

Rationale
These comments provide information that the Javadoc utility uses to generate

hypertext-based, reference, Application Programming Interface (API) documentation.

BSSC 2005(2) Issue 1.0 50
CHAPTER 5
DOCUMENTATION AND COMMENTING CONVENTIONS

Rule 45: Document public, protected, package, and private members.

Supply documentation comments for all members, including those with pack-
age, protected, and private access.

Rationale
The developer who must understand your code before implementing an en-

hancement or a defect fix will appreciate your foresight in providing quality documen-
tation for all class members, not just for the public ones.

Rule 46: Use a single consistent format and organization for all documentation
comments.

A properly formatted documentation comment contains a description followed
by one or more Javadoc tags. Format each documentation comment as follows:

• Indent the first line of the comment to align the slash character of the start com-
ment symbol “/**” with the first character in the line containing the associated
definition.

• Begin each subsequent line within an asterisk “*”. Align this asterisk with the
first asterisk in the start comment symbol.

• Use a single space to separate each asterisk from any descriptive text or tags
that appear on the same line.

• Insert a blank comment line between the descriptive text and any Javadoc tags
that appear in the comment block.

• End each documentation comment block with the asterisk in the end comment
symbol “*/” aligned with the other asterisks in the comment block.

Rationale
Formatting conventions are necessary to achieve code uniformity.

Example
/**
* Descriptive text for this entity.
*
* @tag Descriptive text for this tag.
*/

Rule 47: Wrap keywords, identifiers, and constants mentioned in documentation
comments with <code>...</code> tags.

Nest keywords, package names, class names, interface names, method
names, field names, parameter names, constant names, and constant values that
appear in a documentation comment within HTML <code> ...</code> mark-up
tags.

Rationale
The <code> ... </code> tags tell HTML browsers to render the content in a

style different from that of normal text, so that these elements will stand out.

BSSC 2005(2) Issue 1.0 51
CHAPTER 5
DOCUMENTATION AND COMMENTING CONVENTIONS

Example
/**
* Allocates a <code>Flag</code> object
* representing the <code>value</code> argument.
* ...
*/
public Flag(boolean value)
{
 ...
} // end method

Rule 48: Wrap full code examples appearing in documentation comments with
<pre> ... </pre> tags.

Rationale
The <pre> ...</pre> tags are used to tell HTML browsers to retain the original

formatting, including indentation and line ends, of the “preformatted” element.

Recommendation 13: Consider marking the first occurrence of an identifier with a
{@link} tag.

Rationale
Each package, class, interface, method, and field name that appears within a

documentation comment may be converted into a hypertext link by replacing its
name with an appropriately coded {@link} tag. Some classes and methods are so
frequently used and well known that it is not necessary to link to their documentation
every time they are mentioned. Create links only when the documentation associated
with the referenced element would truly be of interest or value to the reader. This
makes documentation generally easier to read and maintain.

Rule 49: Include Javadoc tags in a comment in the following order:

@author
@param
@return
@throws
@see
@since
@serial
@deprecated

Rationale
Formatting conventions are necessary to achieve code uniformity.

Rule 50: Include an @author and a @version tag in every class or interface de-
scription.

List multiple @author tags in chronological order, with the class or interface

BSSC 2005(2) Issue 1.0 52
CHAPTER 5
DOCUMENTATION AND COMMENTING CONVENTIONS

creator listed first.

Rationale
This way, the history of the file is easier to follow.

Rule 51: Fully describe the signature of each method.

The documentation for each method shall always include a description for each
parameter, each checked exception, any relevant unchecked exceptions, and any
return value.

Include a @param tag for every parameter in a method. List multiple @param
tags in parameter declaration order. Include a @return tag if the method returns
any type other than void. Include an @exception tag for every checked exception
listed in a throws clause. Include an @exception tag for every unchecked exception
that a user may reasonably expect to catch. List multiple @exception tags in alpha-
betical order of the exception class names..

Sort multiple @see tags according to their distance from the current location, in
terms of document navigation and name qualification. Order each group of overload-
ed methods according to the number of parameters each accepts, starting with the
method that has the least number of parameters:

/**
* ...
* @see #field
* @see #Constructor()
* @see #Constructor(Type...)
* @see Class
* @see Class#field
* @see Class#Constructor()
* @see Class#Constructor(Type ...)

Rationale
Formatting conventions are necessary to achieve code uniformity.

5.6 Comment Contents and Style

Recommendation 14: Document preconditions, post conditions, and invariant con-
ditions.

The primary purpose for documentation comments is to define a programming
contract between a client and a supplier of a service. The documentation associated
with a method should describe all aspects of behavior on which a caller of that
method can rely and should not attempt to describe implementation details.

Rationale
As preconditions, post conditions, and invariants are the assumptions under

which you use and interact with a class, documenting them is important, especially if
these conditions are too costly to verify using run-time assertions.

BSSC 2005(2) Issue 1.0 53
CHAPTER 5
DOCUMENTATION AND COMMENTING CONVENTIONS

Recommendation 15: Include examples.

Rationale
One of the easiest ways to explain and understand how to use software is by

giving specific examples. Use the HTML <pre> ...</pre> tags to guarantee that
the formatting of the examples is preserved in the final documentation.

Rule 52: Document synchronization semantics.

Rationale
Methods declared as synchronized will be automatically marked as such in

Javadoc generated documentation. Methods not declared as synchronized may,
however, still be thread-safe, since they could explicitly implement any needed
thread synchronization. In such a situation, you must indicate that the method is in-
ternally synchronized in the corresponding method documentation.

Recommendation 16: Use “this” rather than “the” when referring to instances of the
current class.

When describing the purpose or behavior of a method, use “this” instead of
“the” to refer to an object that is an instance of the class defining the method.

Rationale
Comments written this way are more accurate and easier to formulate.

5.7 Internal Comments

Recommendation 17: Document local variables with an end-line comment.

Document all but trivial local variables with end-line comments.

Rationale
Variable documentation is one of the most helpful aids to understand a pro-

gram.

Example
int i;
float currentMax; // Maximal value seen until now.

Rule 53: Add a “fall-through” comment between two case labels, if no break state-
ment separates those labels.

When the code following a switch statement’s case label does not include a
break but, instead, “falls through” into the code associated with the next label, add a
comment to indicate this was your intent. Note that two adjacent labels do not re-
quire an intervening comment.

Rationale
Other developers may either incorrectly assume a break occurs, or wonder

BSSC 2005(2) Issue 1.0 54
CHAPTER 5
DOCUMENTATION AND COMMENTING CONVENTIONS

whether you simply forgot to code one.

Example
switch (command)
{
case FAST_FORWARD:
 isFastForward = true;
 // Fall through!
case PLAY:
case FORWARD:
 isForward = true;
 break;
case FAST_REWIND:
 isFastRewind =true;
 // Fall through!
case REWIND:
 isRewind = true;
 break ;
} // end switch

Rule 54: Label empty statements.

When a control structure, such as a while or for loop, has an empty block by
design, add a comment to indicate that this was your intent.

Rationale
Empty blocks may be confusing for programmers trying to understand the code.

Making them explicit helps to prevent such confusion.

Example
// Strip leading space
while ((c = Reader.read()) == SPACE)
{
 // Empty!
} // end while

Rule 55: Use end-line comments to explicitly mark the logical ends of conditionals
loops, exceptions, enumerations, methods or classes.

The end-line comments must have the format
// end <keyword>

where <keyword> is one of class, method, if, for, while, switch,
constructor, interface, enum, try, or catch.

Rationale
Largely improves the readability of code by making control structures more visi-

ble.

Example
See examples throughout this document.

BSSC 2005(2) Issue 1.0 55
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

Chapter 6
Java Design and Programming Guidelines

6.1 Introduction
The experience of years of software development with the Java programming

language as well as with other object oriented languages has left a wide variety of
valuable learned lessons that can be applied in new projects to improve almost every
aspect of the development work.

The present chapter summarizes a number of such lessons, explaining, where
necessary, their particular relevance to the Java language and programming envi-
ronment.

6.2 Packages
A package is a conceptual unit consisting of a set of files which together imple-

ment a collection of interfaces and classes.

Recommendation 18: Use separate packages for each of the software components
defined during the design phase.

The design phase shall break the overall software system into logical compo-
nents, as a means of managing the complexity of the overall system. Each one of
these components should correspond to a Java package, properly organized in a
separate file system directory.

Rationale
Following this recommendation makes the file structure of the system reflect its

conceptual structure. Putting separate components into packages also helps encap-
sulation, since the Java programming language offers mechanisms to protect the im-
plementation of a package from being accessed by other, external packages.

Recommendation 19: Place into the same package types that are commonly used,
changed, and released together, or mutually dependent on each other.

If a set of classes and/or interfaces are so closely coupled that you cannot use
one without using the other, put them in the same package. Some examples of
closely related types include:

• Containers and iterators.

• Database tables, rows, and columns.

• Calendars, dates, and times.

• Points, lines, and polygons.

BSSC 2005(2) Issue 1.0 56
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

Combine classes that are likely to change at the same time for the same rea-
sons into a single package. If two classes are so closely related that changing one of
them generally involves changing the other, place them in the same package.

Rationale
Packages are effective units of reuse and release. Effective reuse requires

tracking of releases from a change control system. A package release captures the
latest version of each class and interface.

Recommendation 20: Avoid cyclic package dependencies.

Take steps to eliminate cyclic dependencies between packages, either by com-
bining mutually dependent packages or by introducing a new package of abstrac-
tions that many packages can depend on.

Rationale
Cyclic dependencies make systems more fragile and can make parallel devel-

opment (i.e., development of many packages by many developers or teams working
simultaneously) much more difficult.

Recommendation 21: Isolate volatile classes and interfaces in separate packages.

Separate volatile classes from stable classes to reduce the code footprint af-
fected by new releases, thereby reducing the impact on users of said code. Avoid
placing volatile classes or interfaces in the same package with stable classes or in-
terfaces.

Rationale
Otherwise, when using packages as the unit of release, each time a package is

released, the users must absorb the cost of reintegrating and retesting against all
the classes in the package, although many may not have changed.

Recommendation 22: Avoid making packages that are difficult to change depen-
dent on packages that are easy to change.

Do not make a package depend on less stable packages. If necessary, create
new abstractions that can be used to invert the relationship between the stable code
and the unstable code.

Rationale
Dependencies between packages should be oriented in the direction of increas-

ing stability. A package should only depend on packages that are as stable, or more
stable, than itself.

Recommendation 23: Maximize abstraction to maximize stability.

Separate abstract classes and interfaces from their concrete counterparts to
form stable and unstable packages.

Rationale
The more abstract a package is, the more stable it is.

BSSC 2005(2) Issue 1.0 57
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

Recommendation 24: Capture high-level design and architecture as stable abstrac-
tions organized into stable packages.

Define packages that capture the high-level abstractions of the design. Place
the detailed implementation of those abstractions into separate packages that de-
pend on the high-level abstract packages.

Rationale
To plan and manage a software development effort successfully, the top-level

design must stabilize quickly and remain that way.

Rule 56: Do not use the wildcard (“*”) notation in import statements.

Java import statements have two possible forms. The first one imports a sin-
gle class into the local module's name space, i.e.:

import java.util.Vector;
The second one imports all classes from a given package into the local mod-

ule's name space, i.e.:
import java.util.*;
This second form must be avoided.

Rationale
Explicitly importing classes makes it much easier to know which package a

class comes from. Additionally, since two separate packages could have classes or
interfaces of the same name (i.e. java.util.List and java.awt.List)
import statements using the wildcard notation can lead to name conflicts.

Rule 57: Put all shared classes and interfaces that are internal to a project in a sep-
arate package called “internal”.

Classes and interfaces that are internal to a project, that is, that are not part of
the project's public interface, and that are shared among other packages in the
project, must be put in a separate package called “internal”. Classes in the inter-
nal package could be freely structured in other packages.

Rationale
Internal classes that are shared among two or more packages must me de-

clared public, in order to make the sharing possible at all. This has the side-effect
of making them accessible also to external users of the project. Putting them in a
separate, internal package, makes it clear that they are not part of the official in-
terface of the system and should not be used outside it.

Rule 58: Make classes that do not belong to a package's public API private.

Rationale
This guarantees that these classes will not be accessed by external clients, and

excludes them from the public documentation.

BSSC 2005(2) Issue 1.0 58
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

Recommendation 25: Consider using Java interfaces instead of classes for the
public API of a package.

Rationale
Making interfaces public instead of their corresponding classes makes it easi-

er to change the implementation later on, while keeping the internal API stable.

6.3 General Class Guidelines

Rule 59: Make all class attributes private.

Rationale
Making attributes private ensures consistency of member data, since only the

owning class may change it. If necessary, a class can provide access to selected
member data by defining appropriate public accessor methods.

This practice actually hides the underlying class implementation, making it pos-
sible to transparently change it without affecting the external class interface. The re-
sult is that code depending on the class does not need to change when internal de-
tails of a class are modified. If attributes were public, direct uses of them in other
parts of the system would have to be adapted, with the consequent additional effort
and increased risk of introducing defects.

Example
The classic example is a class representing complex numbers, which offers ac-

cessor routines for the real and imaginary parts of the complex number, as well as
accessor routines for the modulus and argument of the complex number. Class
users do not need to know which representation is used internally.

If the attributes are hidden, any interaction between the attributes can be strictly
controlled within the class itself so that they are guaranteed to be in a consistent
state, thereby reducing the amount of checking code that is needed before their val-
ues are used elsewhere.

Example
class CRange
{
 // Invariant: lowerLimit <= upperLimit
 private int lowerLimit;
 private int upperLimit;
 public void setLimits(int lowerLimit, int upperLimit)
{
 if (lowerLimit <= upperLimit)
 {
 this.lowerLimit = lowerLimit;
 this.upperLimit = upperLimit;
 } // end if
 else

BSSC 2005(2) Issue 1.0 59
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

 {
 this.lowerLimit = upperLimit;
 this.upperLimit = lowerLimit;
 } // end else
 } // end else
} // end class
In the example above the programmer who uses this class does not have ac-

cess to the individual attributes and is forced to use the setLimits() method,
which guarantees that the limits are consistent.

Recommendation 26: Consider declaring classes representing fundamental data
types as final.

Rationale
Declaring a class as final allows its methods to be invoked more efficiently.

Simple classes representing fundamental data types such as, for example, a
ComplexNumber class in an engineering package, often find widespread use within
their target domain. In such a case, efficiency can become an issue of importance.

Of course, declaring your class as final will prohibit its use as a superclass.
Nevertheless, there is seldom any reason to extend a class that implements a funda-
mental data type. In most such cases, object composition is a more appropriate
mechanism for reuse.

Recommendation 27: .Reduce the size of classes and methods by refactoring.

Rationale
Smaller classes and methods are easier to design, code, test, document, read,

understand, and use. Because smaller classes generally have fewer methods and
represent simpler concepts, their interfaces tend to exhibit better cohesion. If a class
or method seems too big, consider refactoring that class or method into additional
classes or methods.

Recommendation 28: Avoid inheritance across packages; rely on interface imple-
mentation instead.

Rationale
Inheritance (as achieved by using the extends keyword) causes a strong cou-

pling between a base class and its subclasses. Any change to the base class may
generate unwanted behavior in the inheritance tree of subclasses. Although this sort
of coupling is often tolerable inside a single package, it can cause problems in a
larger system.

Inheritance should be avoided not only to reduce coupling, but to prevent the
so-called fragile base class problem. Base classes are considered fragile when they
can be modified in a seemingly safe way, but their new behavior, if inherited by de-
rived classes, might cause them to malfunction. So, derived classes as well as base
classes must be tested for the new behavior.

Flexibility is lost because explicit use of concrete classes names locks you into
specific implementations, making down-the-line changes unnecessarily difficult. Pro-
gramming to interfaces is at the core of flexible structure.

BSSC 2005(2) Issue 1.0 60
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

All these disadvantages can be avoided by relying on interface implementation,
as the majority of design patterns [GAM] do. The following example demonstrates
this:

Example
interface Stack
{
 void push(Object o);
 Object pop();
 void pushMany(Object[] source);
} // end interface
class SimpleStack implements Stack
{
 private int stackPointer;
 private Object[] stack;
 public Stack()
 {
 stackPointer = -1;
 stack = new Object[1000];
 } // end constructor
 public void push(Object o)
 {
 assert stackPointer < stack.length-1;
 ++stackPointer;
 stack[stackPointer] = o;
 } // end method
 public Object pop()
 {
 assert stackPointer >= 0;
 stackPointer--;
 return stack[stackPointer+1];
 } // end method
 public void pushMany(Object[] source)
 {
 assert (stackPointer + source.length) < stack.length;
 System.arraycopy(source, 0, stack, stackPointer + 1,
 source.length);
 stackPointer += source.length;
 } // end method
} // end class
class MonitorableStack implements Stack
{
 private int highSizeMark;
 private int currentSize;
 SimpleStack stack;
 public MonitorableStack()

BSSC 2005(2) Issue 1.0 61
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

 {
 highSizeMark = 0;
 stack = new SimpleStack();
 } // end constructor
 public void push(Object o)
 {
 ++currentSize;
 if (currentSize > highSizeMark)
 {
 highSizeMark = currentSize;
 } // end if
 stack.push(o);
 } // end method
 public Object pop()
 {
 --currentSize;
 return stack.pop();
 } // end method
 public void pushMany(Object[] source)
 {
 currentSize += source.length;
 if (currentSize + source.length > highSizeMark)
 {
 highSizeMark = currentSize + source.length;
 } // end if
 stack.pushMany(source);
 } // end method
 public int maximumSize()
 {
 return highSizeMark;
 } // end method
} // end class
Since the two implementations must provide versions of everything in the public

interface, it is much more difficult to get things wrong.

6.4 Nested Classes, Inner Classes, and Anonymous Classes
An inner class is a nested class whose instance exists within an instance of its

enclosing class and has direct access to the instance members of its enclosing in-
stance. An inner class is a non-static nested class.

Inner classes are used primarily to implement adapter classes. You can also
declare an inner class without naming it. This is a so-called anonymous class.

Recommendation 29: Limit the use of anonymous classes.

Limit the use of anonymous classes to classes that are very small (no more
than a method or two) and whose use is well understood (i.e. AWT event handling
adapter classes or Enumerator classes).

BSSC 2005(2) Issue 1.0 62
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

Rationale
Anonymous classes can make code difficult to read and, for this reason, its use

should be reduced to a minimum.

Example
public class Stack
 {
 private Vector items;
 // Stack's methods and constructors
 ...
 public Enumeration enumerator()
 {
 return new Enumeration()
 {
 int currentItem = items.size() - 1;
 public boolean hasMoreElements()
 {
 return (currentItem >= 0);
 } // end method
 public Object nextElement()
 {
 if (!hasMoreElements())
 {
 throw new NoSuchElementException();
 } // end if
 else
 {
 return items.elementAt(currentItem--);
 } // end else
 } // end method
 } // end method
 } // end method
} // end class

6.5 Constructors and Object Lifecycle
Constructors are needed to create new objects and initialize them to a valid

state. Constructors have a large impact on performance. Good coding rules, espe-
cially to minimize their use, are important for well performing applications.

Rule 60: A class shall define at least one constructor.

Rationale
The default constructor, i.e., the one with no arguments, is automatically provid-

ed by the compiler if no other constructors are explicitly declared. The default con-
structor supplied by the compiler will initialize data members to null or equivalent
values. For many classes, this may not be an acceptable behavior.

BSSC 2005(2) Issue 1.0 63
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

Rule 61: Hide any constructors that do not create valid instances of the correspond-
ing class, by declaring them as protected or private.

If a constructor produces class invalid instances (i.e., class instances that do
not comply with the class invariant), hide it by declaring it as protected or
private.

Rationale
Public constructors are always expected to return valid instances. Constructors

that do not return valid instances are only conceivable as a means for implementing
higher level functionality in class, and for that reason should always be hidden.

Rule 62: Do not call non-final methods from within a constructor.

Rationale
Subclasses may override non-final methods. Java's runtime system dispatches

calls to such methods according to the actual type of the constructed object, before
executing the derived class constructor. This means that when the constructor in-
vokes the derived method, the instance variables belonging to the derived class may
still be in an invalid state. To prevent this situation from happening, call only final
methods from the constructor.

Recommendation 30: Avoid creating unnecessary objects.

Rationale
Because of the complex memory management operations it involves, object

creation is an expensive process. Creating an object not only implies allocating its
memory, but also taking care of releasing it later. Since the Java programming lan-
guage provides an automatic garbage collector that operates transparently, Java
programmers often forget that garbage collection cycles are expensive, and that they
can seriously increase the overall load of a system.

It is often possible to rationalize the data structures in a program to use less ob-
jects. Also, situations requiring large numbers of objects to be created only to be dis-
carded soon (i.e., nodes of a dynamically allocated queue in a network application)
can be handled by collecting discarded objects in an additional data structure and
reusing them when needed.

Recommendation 31: Avoid using the new keyword directly.

Rationale
From an object-oriented design point of view, the new keyword has two serious

disadvantages:

• It is not polymorphic. Using new implies referencing a concrete class explicitly
by name. New cannot deal with situations where objects of different classes
must be created depending on dynamic conditions.

• It fails to encapsulate object creation. Situations where objects could be created
only optionally cannot be properly handled with new.

BSSC 2005(2) Issue 1.0 64
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

Properly handling these drawbacks is, however, possible. A number of design
patterns, like static factory methods, abstract factories, and prototypes [GAM] can be
used to encapsulate object creation to make it more flexible and scalable.

Critical systems have special rules for memory allocation, that may supersede
this recommendation.

Recommendation 32: Consider the use of static factory methods instead of con-
structors.

Rationale
Static factory methods are static class methods that return new objects of the

class. Among their advantages, with respect to constructors, are:

• They can have descriptive names. This is particularly useful when you need to
have a variety of different constructors that differ only in the parameter list.

• They do not need to create a new object every time they are invoked (that is, they
encapsulate object creation).

• They can return an object of any subtype of their return type (that is, they are poly-
morphic).

Recommendation 33: Use nested constructors to eliminate redundant code.

Rationale
To avoid writing redundant constructor code, call lower-level constructors from

higher-level constructors.

Example
This code implements the same low-level initialization in two different places:
class Equipment
{
 private String name;
 private double balance;
 private final static double DEFAULT_BALANCE = 0.0d;
 Equipment(String name, double balance)
 {
 this.name = name;
 this.balance = balance;
 } // end constructor
 Equipment(String name)
 {
 this.name = name;
 this.balance = DEFAULT_BALANCE;
 } // end constructor
} // end class
This code implements the same low-level initialization in one place only:
class Equipment

BSSC 2005(2) Issue 1.0 65
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

{
 private final static double DEFAULT_BALANCE = 0.0d;
 private String name;
 private double balance;

 Equipment(final String name, final double balance)
 {
 this.name = name ;
 this.balance = balance;
 } // end constructor
 Equipment(final String name)
 {
 this(name, DEFAULT_BALANCE) ;
 } // end constructor
} // end class
This approach is also helpful while validating parameters, as it typically reduces

the number of places a given constructor argument appears.

Recommendation 34: Use lazy initialization.

Do not build something until you need it. If an object may not be needed during
the normal course of the program execution, then do not build the object until it is re-
quired. Use an accessor method to gain access to the object. All users of that object,
including within the same class, must use the accessor to get a reference to the ob-
ject.

Rationale
Lazy initialization makes memory use more efficient.

Example
class Satellite
{
 private AocsSubsystem aocsSubsystem ;
 Satellite()
 {
 this.aocsSubsystem == null ;
 } // end constructor
 AocsSubsystem getAocsSubsystem()
 {
 if (this.aocsSubsystem == null)
 {
 this.aocsSubsystem = new AocsSubsystem();
 } // end if
 return this.aocsSubsystem;
 } // end constructor
} // end class

BSSC 2005(2) Issue 1.0 66
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

6.6 Methods
The Java programming language has very specific recommendations and rules

for methods, the muscles of the code where the real processing is defined. Some of
these rules and recommendations are related to performance, others are related to
good object oriented programming practice, language constructs/keywords, or the
use of threads.

Recommendation 35: Refrain from using the instanceof operator. Rely on poly-
morphism instead.

Do not use instanceof to choose behavior depending upon the object’s type.
Implement, instead, object-specific behavior in methods derived from an appropriate
base class or interface.

Rationale
Choices based on instanceof must be modified every time the set of choice

object types changes, leading to brittle code. Implementations based on polymor-
phism, on the other hand, enable clients to interact with the base abstraction without
requiring any knowledge of the derived classes. This makes it possible to introduce
new classes without modifying the client.

Rule 63: Methods that do not have to access instance variables shall be declared
static.

Rationale
If a method does not require access to the state of an instance, i.e., it neither

reads nor writes any instance variables, it must be declared static.

Example
double static middle(final double x1, final double x2)
{
 return (x1 + x2) / 2;
} // end method

Rule 64: A parameter that is not changed by the method shall be declared final.

Rationale
The compiler should be used to trap as many potential problems as possible.

Declaring parameters that are meant to remain unchanged as final will make the
compiler issue a warning if they are modified inadvertently.

The final declaration also provides the compiler with information that poten-
tially allows it to optimize the code in ways that would not be possible otherwise.

6.7 Local Variables and Expressions
Expressions are the workhorse of an application. Coding rules and recommen-

dations for expressions are needed in every coding language. The coding rules for
the Java programming language related to expressions are very similar to those for
other programming languages.

BSSC 2005(2) Issue 1.0 67
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

Recommendation 36: Use local variables for one purpose only.

Rationale
Programmers often “recycle” local variables, by using them for different purpos-

es in different parts of a complex method (i.e., a single int variable is used as
counter for two totally independent loops). Unfortunately, this practice can cause
confusion when modifying the program, and even lead to errors difficult to spot.

Defining a new local variable for every separate task not only makes code clear-
er and easier to maintain, but can be as efficient as using a single variable, since
most optimizing compilers will transparently allocate memory only for the local vari-
ables that are needed at a particular code spot.

Recommendation 37: Replace repeated non-trivial expressions with equivalent
methods.

Factor out common functionality and repackage it as a method or a class.

Rationale
Doing this makes code potentially easier to learn and understand. Changes are

localized, thus reducing maintenance and testing effort.

Recommendation 38: Consider using the StringBuffer class when concatenat-
ing strings.

Rationale
Concatenating Java strings is a relatively expensive operation, because it al-

ways involves creating a new object to store the result. Algorithms that rely on per-
forming large numbers of concatenation operations may incur large performance
penalties if they are not implemented carefully.

The standard StringBuffer class was designed with this problem in mind.
StringBuffer objects are dynamically growing text buffers that can handle an ar-
bitrary number of concatenations without creating any new objects. Using them prop-
erly can lead to large performance improvements in text processing algorithms.

Rule 65: Use parentheses to explicitly indicate the order of execution of numerical
operators .

Rationale
The default rules for order of execution of numerical operators as defined by the

Java Programming Language differ sometimes from those traditionally used in math-
ematics. Usage of parenthesis is thus obligatory, in order to make explicit the order
intended by the developer.

6.8 Generics and Casting
Generics are a feature introduced to the Java programming language during the

JDK 5.0 development cycle, similar in spirit to C++ templates. They are particularly

BSSC 2005(2) Issue 1.0 68
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

useful for implementing generic collection classes (containers) such as trees, vec-
tors, linked lists, and hash maps. In doing so, they make it possible to avoid the pro-
cess of casting, which is highly error-prone and potentially inefficient, since casts
must always be checked dynamically for type compatibility. The use of generics is
highly recommended and is always preferable over the casting mechanism.

Generic classes are, in reality, not as straightforward as they might at first ap-
pear, especially when trying to provide true genericity. The design of a generic class
needs some forethought, as that of any class which is used as a template parame-
ter.

Recommendation 39: Use the enhanced for control structure and generics wher-
ever possible/applicable.

Rationale
These features of the Java programming language not only make code simpler

and easier to read, but safer and potentially more efficient. They constitute an excel-
lent way of producing highly reusable code.

Example
First an example that iterates over a collection, without using any of the fea-

tures:
void cancelAll(collection c)
{
 for (Iterator i = c.iterator(); i.hasNext();)
 {
 TimerTask tt = (TimerTask) i.next();
 tt.cancel();
 } // end for
} // end method
The new way as illustrated below is shorter, more readable and easier to under-

stand:
void cancelAll(Collection<TimerTask> c)
{
 for (TimerTask task : c)
 {
 task.cancel();
 } // end for
} // end method

Rule 66: Use generics instead of casting when navigating through collections.

The original Java method of casting simple variables from one type to another
is still available in newer versions, but its use is strongly discouraged.

Rationale
Casts can fail at run time and often make code unreadable.

Example
A method implemented using the traditional cast mechanism:

BSSC 2005(2) Issue 1.0 69
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

static void expurgate(Collection c)
{
 for (Iterator i = c.iterator(); i.hasNext();)
 {
 String s = (String) i.next();
 if (s.length() == 4)
 {
 i.remove();
 } // end if
 } // end for
} // end method
Casts instruct the compiler to override any type of information about an expres-

sion. Generics should be used instead as outlined below:
static void expurgate(Collection<String> c)
{
 for (Iterator<String> i = c.iterator(); i.hasNext();)
 {
 if (i.next().length() == 4)
 {
 i.remove();
 } // end if
 } // end for
} // end method
It is now clear from the method signature that the input collection is only allowed

to contain strings. A client program trying to pass in, for example, a collection of
string buffers, would not even compile. This would not be the case with the cast-
based implementation, which would only fail at run-time.

6.9 Constants and Enumerated Types

Recommendation 40: Be careful when using the import static feature to define
global constants.

Rationale
The import static facility (available from J2SE SDK 5.0 onwards) elimi-

nates the need to prefix static members with class names. It also eliminates the need
to resort to problematic patterns, like defining constants inside an interface. The use
of this feature, however, must be restricted to truly class independent constants.
Constants related to a particular class, like those defining input or output values for
class methods, should remain associated to the class they belong to.

In large projects, the import static feature can lead to code traceability
problems. Because of that, it is important to use it carefully, if at all.

Example
A common (but not recommended) pattern is to put frequently used constants in

an interface, to avoid explicitly referencing the class they belong to:
/* "Constant interface" antipattern - do not use */
public interface SpacePhysicsConstants

BSSC 2005(2) Issue 1.0 70
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

{
 public static final double LIGHT_SPEED = 3000000000d ;
 public static final double ELECTRON_MASS = 9.10938188e-31;
} // end interface
public class Satellite implements SpacePhysicsConstants
{
 public static void main(String[] args)
 {
 double mass = ...;
 double energy = (LIGHT_SPEED ^ 2) * mass;
 ...
 } // end main
} // end class
This confuses the clients of the class and creates a long-term commitment. If a

set of constants is really so generic and global that it cannot be associated to any
particular class, using import static is a better solution.

Example
The import static facility lets the programmer avoid qualifying static mem-

ber names without subtyping. It is analogous in syntax to the package import facili-
ty, except that it imports static members from a class, rather than classes from a
package:

import static esa.SpacePhysicsConstants.*;
class Satellite
{
 public static void main(String[] args)
 {
 double mass = ...;
 double energy = LIGHT_SPEED ^ 2 * mass;
 ...
 } // end main
} // end class

Recommendation 41: Use type-safe enumerations as defined using the enum key-
word.

Rationale
The J2SE development cycle introduced a new feature to Java: typesafe enu-

merations. Typesafe enumerations offer a number of advantages with respect to the
previous approach of using static final class variables (so-called int enumera-
tions):

• They provide compile-time type safety. Values of an int enumeration could be
assigned to variables intended to contain values of a different enumeration.
Type-safe enumerations prevent that.

• They provide a proper name space for the enumerated type. With int enumer-
ations, constants must be prefixed to avoid name clashes.

• They are robust. int enumerations are compiled into clients. Clients must be
recompiled to add, remove, or reorder constants.

BSSC 2005(2) Issue 1.0 71
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

• They are informative when printed. Printing int enumeration constants displays
only the numeric value.

• Because they are objects, you can put them in collections.

• Because they are essentially classes, you can add arbitrary fields and methods.

Example
public enum Planet
{
 MERCURY(3.303e+23, 2.4397e6),
 VENUS(4.869e+24, 6.0518e6),
 EARTH(5.976e+24, 6.37814e6),
 MARS(6.421e+23, 3.3972e6),
 JUPITER(1.9e+27, 7.1492e7),
 SATURN(5.688e+26, 6.0268e7),
 URANUS(8.686e+25, 2.5559e7),
 NEPTUNE(1.024e+26, 2.4746e7),
 PLUTO(1.27e+22, 1.137e6);
 private final double mass; // in kilograms
 private final double radius; // in meters
 Planet(final double mass, final double radius)
 {
 this.mass = mass;
 this.radius = radius;
 } // end constructor
 private double setMass()
 {
 return mass;
 } // end method
 private double setRadius()
 {
 return radius;
 } // end method
} // end enum

6.10 Thread Synchronization Issues

Recommendation 42: Use threads only where appropriate.

Rationale
Threads are not a “silver bullet” for improving application performance. Depend-

ing on a variety of factors, the overhead required to switch between threads may in-
deed make an application slower.

Before introducing threads into an application, try to determine whether it can
really benefit from their use. Consider using threads if your application needs:

• To react to many events simultaneously (i.e., an Internet server).

BSSC 2005(2) Issue 1.0 72
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

• To provide a high level of responsiveness (i.e., an interactive application that
continues to respond to user actions even when performing other
computations).

• To take advantage of machines with multiple processors.

Recommendation 43: Reduce synchronization to the minimum possible.

Rationale
Synchronization is expensive. Acquiring and releasing the special objects nec-

essary to synchronize a section of code is often a costly operation. Moreover, syn-
chronization serializes access to an object, reducing concurrency.

Do not arbitrarily synchronize every public method. Before synchronizing a
method, consider whether it accesses shared and non-synchronized states. If it does
not, if the method only operates on its local variables, parameters, or synchronized
objects, synchronization is probably not required. Additionally, do not synchronize
classes that provide fundamental data types or structures.

Recommendation 44: Do not synchronize an entire method if the method contains
significant operations that do not need synchronization.

Rationale
A method annotated with the synchronized keyword acquires a lock on the

associated object at the beginning of the method and holds that lock until the end of
the method. As is often the case, however, only a few operations within a method
may require synchronization. In such a situation, method level synchronization can
be much too coarse.

The alternative to method level synchronization is to use the synchronized block
statement:

protected void processRequest ()
{
 Request request = getNextRequest();
 RequestId id = request.getId();
 synchronized (this)
 {
 RequestHandler handler = this.handlerMap.get(id);
 } // end method
 handler.handle(request);
} // end method

Though this does not pertain to safety critical Java (see chapter 9), it does
seem to contradict the no synchronized block rule in safety critical Java. As an alter-
native, one could provide a synchronized private method called by the public or pro-
tected method to reduce the extent of the synchronization. Such a method could also
be used by other public methods as well.

protected void processRequest()
{

Request request = getNextRequest();

BSSC 2005(2) Issue 1.0 73
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

RequestId id = request.getId();
RequestHandler handler = getHandler(id);
handler.handle(request);

} // end method

private synchronized RequestHandler getHandler(RequestId id)
{
return this.handlerMap.get(id);
} // end method

Note that the example as given will not work, since the handler variable is de-
fined within the synchronization block but is referenced after the end of the block.

Recommendation 45: Avoid unnecessary synchronization when reading or writing
instance variables.

Rationale
The Java programming language guarantees that read and write operations are

atomic for object references as well as for all primitive types, with the exception of
long and double. Therefore, it is possible to avoid the use of synchronization when
reading or writing atomic data. On the other hand, if the value of an atomic variable
depends on, or is related to, those of other variables, synchronization may still be
necessary.

Example
In the following example, the assignments of x and y must be synchronized to-

gether because they are interdependent values:
public void synchronized setCenter(int x, int y)
{
 this.x = x;
 this.y = y;
} // end method
The following example does not require synchronization because it uses an

atomic assignment of an object reference:
public void setCenter (Point p)
{
 this.point = (Point) p.clone() ;
} // end method

Please note, that the example given trades off less synchronization for more
garbage collection overhead. However, if Point is immutable, then clone is not nec-
essary.

BSSC 2005(2) Issue 1.0 74
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

Recommendation 46: Use synchronized wrappers to provide synchronized inter-
faces.

Use synchronized wrappers to provide synchronized versions of classes in situ-
ations where they are needed, i.e. to protect the integrity of shared data and to com-
municate program state changes efficiently between cooperating threads. Synchro-
nized wrappers provide the same interface as the original class, but their methods
are synchronized. A static method of the wrapped class provides access to the syn-
chronized wrapper.

Rationale
Synchronized wrappers allow for the same code to be used in an unsynchro-

nized and in a synchronized fashion in the same process.

Example
The following example (not meant to be run or be a full class definition but only

to show the principle) demonstrates a stack, which has a default, non-synchronized
interface and a synchronized interface provided by the wrapper class.

public class Stack
{
 public void push (Object o)
 {
 ...
 } // end method
 public Object pop()
 {
 ...
 }// end method
 public static Stack createSynchronizedStack()
 {
 return new SynchronizedStack();
 } // end method
} // end class
class SynchronizedStack extends Stack
{
 public synchronized void push (Object o)
 {
 super.push(o);
 } // end method
 public synchronized Object pop()
 {
 return super.pop();
 } // end method
} // end class

Please note that having a factory method for a subclass creates a circular

dependency. This will often not be possible without modifying code from

BSSC 2005(2) Issue 1.0 75
CHAPTER 6
JAVA DESIGN AND PROGRAMMING GUIDELINES

other sources (libraries). If one does have control over the original class

and one wants a factory method, it may be better to use an inner class for

the synchronized version.

Recommendation 47: Consider using notify() instead of notifyAll().

The notify() and notifyAll() methods are used when a thread must
block waiting for other threads to perform a particular operation. Whenever possible,
use the more efficient notify() method instead of its notifyAll() counterpart.

Use notify() when threads are waiting on a single condition and when only a
single waiting thread may proceed at a time.

Use notifyAll() when threads may wait on more than one condition or if it is
possible for more than one thread to proceed in response to a signal.

Rationale
The notify() method is more efficient.

Recommendation 48: Use the double-check pattern for synchronized initialization.

Use the double-check pattern in situations where synchronization is required
during initialization, but not after it.

Rationale
The double-check pattern makes it possible to avoid expensive synchronization

operations in many common situations.

Example
This code also protects against simultaneous initialization but it uses the dou-

ble-check pattern to avoid synchronization except during initialization:
Log getLog()
{
 if (this.log == null)
 {
 synchronized (this)
 {
 if (this.log == null)
 {
 this.log = new Log();
 } // end if
 } // end method
 } // end if
 return this.log;
} // end method

BSSC 2005(2) Issue 1.0 76
CHAPTER 7
ROBUSTNESS

Chapter 7
Robustness

7.1 Introduction
The concept of robustness applies to software development at different levels.

A running software system is considered robust if it reacts properly to unexpected
situations. A piece of code is considered robust when it is instrumented in such a
way that it helps detect and correct errors (both in programming and during execu-
tion).

This chapter is concerned with robustness in Java systems. Some of the rules
and recommendations are directed to achieving more robust code (concretely, the
sections on design by contract and assertions). Others, particularly those related to
error handling, are more concerned with run-time robustness. The overall application
of the rules and recommendations in this chapter should lead to more reliable sys-
tems.

7.2 Design by Contract

Recommendation 49: Define method contracts and enforce them.

Define a “contract” for each method you write, consisting of its pre- and post-
conditions:

• The preconditions are the set of logical conditions on the object state and pa-
rameter values that must hold in order for the method to be able to perform its
task.

• The postconditions are the set of logical conditions on the object state and
method return value that must hold after the method has performed its task.

Preconditions are the part of the contract a method caller must comply with.
Postconditions are the part of the contract a method implementation must fulfill.

Whenever possible, a program should use assertions or other adequate means
to explicitly check for method contracts being respected. Unfortunately, though,
some logical pre- or postconditions of a method could be technically very difficult or
onerous to check. Do your best, however, to always check as much as technically
feasible.

Rationale
The usage of contracts is a well known way to make modules more robust and

reliable.

BSSC 2005(2) Issue 1.0 77
CHAPTER 7
ROBUSTNESS

Recommendation 50: Whenever possible, a method should either return the result
specified by its contract, or throw an exception when that is not possible.

Rationale
 The ideal behavior for a method is to return normally only when its contract was

completely fulfilled. If this is not the case, the method should terminate abnormally
with an exception. This can be achieved by properly checking the pre- and postcon-
ditions of a method using an adequate combination of normal conditions and asser-
tions.

Rule 67: Preserve method contracts in derived classes.

Methods that override methods in a base class must preserve the pre- and
postconditions specified in the base class. More concretely:

• A subclass method is not allowed to strengthen the preconditions of its counter-
part in a superclass.

• A subclass method is not allowed to weaken the postconditions of its counter-
part in a superclass.

Rationale
Only by respecting this rule is it possible to guarantee that instances of a super-

class can be safely and transparently substituted by instances of one of its subclass-
es. Such substitutability is a key principle of object-oriented design.

7.3 Assertions

Recommendation 51: Rely on Java's assert statement to explicitly check for pro-
gramming errors in your code.

Use Java's assert statement liberally to ensure that the basic premises upon
which a piece of code was designed and built actually hold during runtime.

Rationale
Assertions are a simple, yet very valuable mechanism that can greatly help to

diagnose problems during testing and even after deployment. Additionally, since as-
sertions can be easily disabled, their impact on performance in a production environ-
ment is usually negligible.

Rule 68: Explicitly check method parameters for validity, and throw an adequate ex-
ception in case they are not valid. Do not use the assert statement for this pur-
pose.

Rationale
It is a common programming error to invoke a method with invalid parameter

values, i.e., parameter values that do not lie within the value ranges expected by the
method. The accepted practice in the Java programming community is to check for
parameter validity using standard code (as opposite to assertions) in order to keep
such checks permanently enabled during program execution, regardless of whether

BSSC 2005(2) Issue 1.0 78
CHAPTER 7
ROBUSTNESS

assertions are enabled or not.

Checking for parameter validity and, generally, for method preconditions, helps
to guarantee that established interfaces in a system are being used as specified.
This, in turn, helps to reduce the coupling in a system, by making it possible to re-
place module or component implementations when necessary.

Rule 69: Add diagnostic code to all areas that, according to the expectations of the
programmer, should never be reached.

Areas of a program that are not expected to ever be reached by the flow of con-
trol (for example, default cases for switch statements, when it is known that the
case sections cover all possible situations) should still contain code to produce a di-
agnostic message if they are reached due to a programming error.

Rationale
Adding such diagnostic code makes it easier to detect and correct a number of

potential software defects. This is an effective form of defensive programming.

Rule 70: Do not use expressions with side effects as arguments to the assert
statement.

Rationale
Besides producing a result value, expressions with side effects potentially modi-

fy variable values (think of an expression invoking a method that not only returns a
value but modifies the object). If an expression with a side effect is used as argu-
ment for an assert statement, the behavior of the program will probably change
when assertions are disabled. Since it should always be possible to disable asser-
tions for a program or subsystem, they are not allowed to have side effects.

7.4 Debugging

Rule 71: Use the Java logging mechanism for all debugging statements instead of
resorting to the System.out.println function.

Rationale
The system streams (e.g. in, out, err) should only be used by command line

applications. Additionaly, using the logging mechanism makes it possible to keep all
debugging statements in the code, and to use them at the finest granularity during
trouble shooting. During normal operation of the software, on the other hand, logging
can be set to "coarse" and, as such, will not process any debug messages. It also
saves work in trying to find the source of stray System.out.println statements
left in the code after debugging.

7.5 Exceptions and Error Handling
Exceptions are the main technique the Java programming language offers to

handle errors and abnormal conditions. They have a number of advantages over
more traditional error management techniques:

• They cleanly separate error handling code from other code.

BSSC 2005(2) Issue 1.0 79
CHAPTER 7
ROBUSTNESS

• They automatically propagate errors up the call stack in a fashion that is com-
patible with the general program control structure.

• They allow grouping of error types, allowing for more flexible and structured er-
ror handling.

The rules and recommendations in this section are related to the appropriate
use of exceptions in Java programs.

Rule 72: Use unchecked, run-time exceptions to handle serious unexpected abnor-
mal situations, including those that may indicate errors in the program’s logic.

Use unchecked exceptions (i.e., exception objects derived directly or indirectly
from either the java.lang.Error or the java.lang.RuntimeException class)
to handle situations typically arising from programming errors, or from abnormal situ-
ations of such a severe nature that program termination is imminent.

Rationale
The situations described by this rule are such that there is not much an applica-

tion can do to handle them properly. Solving such situations usually requires external
intervention (for example, to fix a code defect). Consequently, it is not worthwhile to
make the program logic more complex because of them, which would be the case if
checked exceptions were used.

Unchecked exceptions can still be trapped if the program has a reasonable way
of handling them.

Example
Unchecked exceptions could be used to handle situations such as:

• A failed assertion (the assert statement automatically throws an exception).

• An out-of-bounds index.

• A division by zero.

• An attempt to dereference a null reference.

• A serious input/output error.

• An operating system failure.

Rule 73: Use checked exceptions to report errors that may occur, even if rarely, un-
der normal program operation.

Use checked exceptions to handle problematic situations that may occur during
normal program operation. In many cases, such problems can be handled appropri-
ately by the caller of the method throwing the exception.

Rationale
Errors that may occur under during normal program operation must be reported

through checked exception in order to make the caller aware of the fact that they
should be handled in some way or another.

BSSC 2005(2) Issue 1.0 80
CHAPTER 7
ROBUSTNESS

Example
Checked exception could be used to handle situations such as:

• The user typed invalid information.

• Incorrectly formatted information was read from an open network connection.

• A client does not have the required security privileges.

Rule 74: Do not silently absorb a run-time or error exception.

Rationale
Breaking this rule makes code hard to debug because valuable information gets

lost. Even if you have coded a catch block simply to catch an exception you do not
expect to occur, print at least a stack trace. You never know when something “im-
possible” might occur within your software.

Example
try
{
 for (int i = v.size() - 1; i >= 0; i--)
 {
 ostream.println(v.elementAt(i));
 } // end for
} // end try
catch (ArrayIndexOutOfBoundsException e)
{
 // Should never get here but if we do, nobody will ever know.
 // Print a stack trace just in case.
 e.printStackTrace();
} // end catch

Recommendation 52: Whenever possible, use finally blocks to release re-
sources.

Rationale
Once a try block is entered, the corresponding finally block is guaranteed

to be executed, regardless of whether an exception is thrown or not. This makes the
finally block an ideal place to release any resources acquired prior to entering or
within the try block.

Recommendation 53: Only convert exceptions to add information.

It is often necessary to trap an exception only to re-throw it right away (for ex-
ample, because another type of exception is now required). While doing so, do not
discard any information, but add any new information you may have to the existing
exception.

Rationale
Discarding information may make some problems extremely difficult to diag-

nose. In certain cases, it may lead to problems going undetected that would have

BSSC 2005(2) Issue 1.0 81
CHAPTER 7
ROBUSTNESS

otherwise been noticed.

Rule 75: Never ignore error values reported by methods.

Although the typical Java practice is to rely on exceptions for handling error
conditions, some libraries still use special return values to indicate abnormal condi-
tions. In such cases, always check for error values and code an appropriate re-
sponse. A possible course of action is to wrap such methods into methods that
check for error return values and throw appropriate exceptions when they appear.

Rationale
Ignoring error messages may difficult the detection of certain problems.

7.6 Type Safety

Recommendation 54: Encapsulate enumerations as classes.

Encapsulate enumerations as classes to provide type-safe comparisons of enu-
merator values. The enum construct, available in J2SE 5.0 and later, is a very conve-
nient way of doing so.

Rationale
A proper encapsulated enumeration is type-safe, which means that the compiler

is able to detect improper uses of the enumeration constants.

BSSC 2005(2) Issue 1.0 82
CHAPTER 8
PORTABILITY

Chapter 8
Portability

8.1 Introduction
The Java platform is one of the few software technologies allowing both source

and byte code to be made 100% platform-independent with relatively little effort. It
means writing and compiling code once and running it everywhere without modifica-
tion (under the condition, of course, that a suitable Java Virtual Machine is installed
on each target platform). The result is complete independence of operating system
and hardware type. The rules and recommendations in this chapter are intended to
support programmers in producing 100% portable Java code.

It is important to point out, that some particular applications cannot be (and
probably do not need to be) 100% portable. Code written for real-time Java virtual
machines is one example. Applications that directly access hardware are another.
Even in such cases, however, the rules and recommendations presented here could
be helpful, since achieving a maximum of portability is always valuable.

8.2 Rules

Recommendation 55: Whenever possible, prefer the Swing API to the old AWT API
for developing graphical user interfaces.

Rationale
The Swing classes are designed for 100% portability, and support a tunable

look-and-feel (Windows-like, Unix-like, Motif-like, Linux-like, etc). They should be
used in preference to the older AWT API. The AWT API will still run on various plat-
forms, but will react or look differently depending on the underlying operating sys-
tem.

Rule 76: Do not rely on thread scheduling particularities to define the behavior of
your program, use synchronization instead.

Rationale
The way an operating system or its underlying hardware distribute processor

cycles among threads, can vary widely from platform to platform. A program that ex-
pects the thread system to, for example, handle control from one thread to the next
at a particular point in the execution, may work on some platforms but not on others.
One implication of this fact is that no amount of testing is enough to guarantee that a
thread-based algorithm is actually correct in a platform independent fashion. Careful
inspection, or even formal verification are always necessary.

Unfortunately, this is a problem that is neither easy to detect nor to correct. De-

BSSC 2005(2) Issue 1.0 83
CHAPTER 8
PORTABILITY

signing correct thread-safe algorithms requires applying proper principles and vali-
dating them thoroughly.

Example
Because of the lack of synchronization between threads, the program below

could write “1” or “2”, or even produce an error depending on the characteristics of
the underlying thread implementation. This could not be noticed by casual testing. If
the thread implementation, for example, guarantees that the assignment in method
“run” is atomic, it would consistently print “2”.

class Counter implements Runnable
{
 static int counterValue = 0;
 public void run()
 {
 counterValue += 1;
 } // end method
 public static void main(String[] args)
 {
 try
 {
 Thread thread1 = new Thread(new Counter());
 thread1.setPriority(1);
 Thread thread2 = new Thread(new Counter());
 thread2.setPriority(2);
 thread1.start();
 thread2.start();
 thread1.join();
 thread2.join();
 System.out.println(counterValue);
 } // end try

catch (Exception e)
 {
 e.printStackTrace();
 } // end catch
 } // end main
} // end class

Rule 77: Avoid native methods.

Rationale
Native methods (i.e., methods written in C++ or other programming languages

and linked to the Java virtual machine through the Java Native Method Interface) are
usually tied to the platform they where developed in. Porting them to other platforms
may be a big challenge, involving multi-platform compilation systems, and conditional
code.

BSSC 2005(2) Issue 1.0 84
CHAPTER 8
PORTABILITY

Recommendation 56: Do not use the java.lang.Runtime.exec method.

Rationale
The java.lang.Runtime.exec method starts arbitrary programs in the same

computer system where the caller program is running, referencing them by name.
Since the naming rules for programs differ widely among computing platforms, use
of java.lang.Runtime.exec can never be made totally portable.

Note: This is quite a hard restriction. It is sufficient to avoid hard

coding program names and to use a configuration file instead.

Recommendation 57: Do not hard-code display attributes, like position and size for
graphical element, text font types and sizes, colors, layout management details,
etc.

Rationale
It can be very difficult, if not impossible, to find a fixed set of display values that

makes an application run properly in every single system. A judicious use of the sys-
tem properties, together with proper application of relevant graphical toolkit facilities
(for example, layout managers) should avoid most portability problems related to dis-
play attributes.

Recommendation 58: Check all uses of the Java reflection features for indirect in-
vocation of methods that may cause portability problems.

Rationale
The reflection features available in the Java programming language allow indi-

rectly instantiating arbitrary classes and invoking arbitrary methods. While doing this,
a program may invoke methods that are not portable, or invoke portable methods in
non-portable ways. Code using reflection must be carefully inspected for such prob-
lems if portability is a priority.

Rule 78: Restrict the use of the System.exit method to the cases described be-
low.

The System.exit method terminates a program instantly. Restrict its use to:

• Fatal errors that absolutely require terminating the application immediately.

• Utility programs intended to be invoked from the command line or from script in-
terpreters, where the program return value may be important.

Rationale
Sudden termination of a program may lead to undesired interactions with the

user or with the operating system (i.e., a program suddenly closing all of its windows
or terminating without releasing all resources). Such behaviors may be acceptable in
some platforms and unacceptable in others.

BSSC 2005(2) Issue 1.0 85
CHAPTER 8
PORTABILITY

Rule 79: Do not hard-code file names and paths in your program.

Rationale
File naming rules and rules to form file paths vary widely depending on the op-

erating system. Hard coded names can be interpreted quite differently when a pro-
gram is moved to a different platform. With careful programming, it is possible for a
program to parse or build file paths portably by using the fields and methods in the
java.io.File class. However, doing this should be left as a last resort. Programs
should rely, as much as possible, on other facilities offered by the Java platform, like
property files or file selection dialog boxes.

Example
Some file naming convention differences between the UNIX and DOS/Windows

platforms:

• In UNIX the character separator is the slash (“/”), whereas in DOS/Windows it
is the back-slash (“\”).

• DOS/Windows uses drive letters (i.e. “c:\windows”) while UNIX does not.

• Spaces are commonly used as part of Windows file names. They are unusual in
UNIX and may cause problems in some systems.

• The period (“.”) is a special character in DOS/Windows, separating the file
name from its three-letter extension. In UNIX, periods are not special and can
be (and often will be) used twice in a single name.

• DOS/Windows ignores case differences, whereas UNIX does not. Invoking the
java.io.FileInputStream with the string “README.TXT” will work under
Windows to open a file called “Readme.txt”. In UNIX it will fail.

Rule 80: Always make JDBC driver names configurable, do not hard code them.

Rationale
JDBC drivers, particularly those including native code, can be less portable than

the Java program using them. Making the specific driver name configurable through
the standard jdbc.drivers system property, a property file, or some other, custom
mechanism, guarantees that a program can be reconfigured to use a different driver
if that happens to be necessary when moving it to a new platform.

Rule 81: Do not rely on a particular convention for line termination.

Rationale
The way text is represented in files is different for every single platform. Even

on platforms using the ASCII character set, line ends are represented using a variety
of characters and character combinations. Writing code that relies on a particular
character or character sequence to terminate lines will lead to portability problems

Use the readLine method from the java.io.BufferedReader class to
fetch complete lines of text, and the writeLine or println functions to output
lines of text. These methods work reliably with any local conventions the platform
may have. Depending on the problem at hand, other classes and methods in the

BSSC 2005(2) Issue 1.0 86
CHAPTER 8
PORTABILITY

Java library may be able to handle text files in a portable way.

Rule 82: Restrict the use of System.in, System.out or System.err to pro-
grams explicitly intended for the command line.

Rationale
Not all system platforms supported by the Java programming language have

native standard input, output, and error streams, and even those that do, may run
programs under conditions where some or all of those streams are not accessible
(i.e. server programs under UNIX). Using a GUI or, alternatively, writing to and read-
ing from normal files may solve the problem in many cases.

Recommendation 59: Rely on the widely known POSIX conventions to define the
syntax of your command line options.

Use the well known POSIX syntax (option names preceded with a dash “-” char-
acter) for options. Whenever possible, provide alternatives to the command line, like
a graphical interface or configuration files.

Rationale
Command line option parsing is done completely by Java applications. Unfortu-

nately, the usual syntax for command line options can vary widely from platform to
platform.

Rule 83: When necessary, use the internationalization and localization features of
the Java platform.

If your program contains user visible texts, or any other form of data display or
entry that may vary depending on local conventions, use the internationalization and
localization features of the Java platform to make your work easily adaptable to the
local conventions of any potential users.

Rationale
The Java internationalization and localization features are robust, well docu-

mented and platform-independent.

Recommendation 60: Restrict the use of non ASCII characters in your messages to
the minimum possible.

Rationale
Some platforms cannot display arbitrary Unicode characters. On the other hand,

using non ASCII characters in internationalization resources is still appropriate, since
internationalization can always be turned off. Restricting your original messages to
ASCII guarantees that your program works (even if with somewhat restricted func-
tionality) in any platform.

BSSC 2005(2) Issue 1.0 87
CHAPTER 8
PORTABILITY

Rule 84: Do not hard code position and sizes of graphical elements.

Rationale
Appropriate sizes for for graphical elements can only be calculated depending

on the current screen size and resolution, selected font size, and other factors that
depend on the particular hardware and software platform, as well as on the user-se-
lected options. Using a layout manager not only abstracts this details in a portable
way, but often makes programing easier.

Rule 85: Do not hard code text sizes or font names.

Rationale
The availability of font styles and sizes depends on the underlying hardware and

software platform, as well as on the current settings of the Java runtime environ-
ment. Use the Java library to get metrics information from any fonts you use, and
rely on that information for laying out the corresponding texts. When selecting a non-
standard font (one not guaranteed to be available on every platform) make sure that
a reasonable standard replacement will be used if the font is not available.

Rule 86: Do not hard code colors or other GUI appearance elements.

Rationale
The number of available colors and the actual color palette available changes

depending of the platform. A color selection that works adequately in a certain plat-
form, may render text or graphical elements unreadable or unrecognizable in other
platform.

Rule 87: Do not retain Graphics objects passed to update methods of graphical
components.

Rationale
The standard AWT Component.paint and Component.update class meth-

ods (all standard Swing components are derived from class
java.awt.Component) receive an object implementing the Graphics interface as
parameter. This object is expected the be valid only for the duration of the corre-
sponding paint or update operation. Retaining it for using in subsequent operations
may work on some platforms and fail on others.

Example
The following pattern should be avoided:
Graphics retainedGraphics = null; // retained, do not do this!
void paint(Graphics g)
{
 if (retainedGraphics == null)
 {
 retainedGraphics = g.create();
 } // end if

BSSC 2005(2) Issue 1.0 88
CHAPTER 8
PORTABILITY

 // painting code goes here
 ...
} // end uidelines for Developing Pure Programs

Rule 88: Do not use methods marked as deprecated in the Java API.

Rationale
Methods marked as deprecated are scheduled for removal in future versions of

the API.

Rule 89: Do not rely on the format of the result of the
java.net.InetAddress.getHostName method.

Rationale
The actual format of the getHostName method depends on the underlying soft-

ware and hardware platform. Sometimes it is just the simple host name, whereas
some other times it includes a fully qualified domain name.

Rule 90: Always check for local availability of Pluggable Look and Feel (PLAF)
classes, and provide a safe fall back in case they are not available.

When setting a particular PLAF class, check that it is both available and sup-
ported. If not, fall back to one of the standard PLAFs.

Rationale
Pluggable Look and Feel (PLAF) classes allow for graphical elements to take a

distinctive appearance and behavior (for example those of the underlying operating
system). Of course, not all PLAF classes are installed in all platforms. Even if you in-
clude PLAF classes with your program's distribution, they may not work on particular
platforms.

Rule 91: Do not mix classes compiled against different versions of the Java plat-
form.

Rationale
In some rare situations, bug fixes or subtle changes between versions of the

Java platform may cause problems when classes compiled against different versions
of the Java platform are used together.

BSSC 2005(2) Issue 1.0 89
CHAPTER 9
REAL-TIME JAVA

Chapter 9
Real-Time Java

9.1 Introduction
As a very high-level programming language, Java offers programmer and soft-

ware maintenance productivity benefits that range from two to ten-fold over uses of
C and C++. By carefully applying Java technologies to embedded real-time systems,
software engineers are able to deliver higher software quality, increased functionali-
ty, and greater architectural flexibility in software systems. The rules and recommen-
dations in this chapter are oriented towards making the use of Java for real-time sys-
tems implementation as effective and reliable as possible.

9.2 A Note on Automatic Garbage Collection
One of the key reasons why Java developers are more productive than C and

C++ developers is because of automatic garbage collection. According to a study
performed by Xerox Palo Alto Research Center in the early 1980s, automatic
garbage collection reduces programming effort associated with large, complex soft-
ware systems by approximately 40%. These benefits are amplified significantly in the
Java environment because automatic garbage collection is the foundation upon
which millions of lines of commercial off-the-shelf software, including all of the stan-
dard Java libraries, are based. If you remove garbage collection from the Java envi-
ronment, not only do you make it more difficult to develop new software, but you also
preclude the use of all existing Java library code.

The power of garbage collection comes with a cost. Traditional Java implemen-
tations occasionally pause execution of Java threads to scan all of memory in search
of objects that are no longer being used. These pauses can last tens of seconds with
large memory heaps. Memory heaps ranging from 100 Mbytes to a full Gigabyte are
being used in certain mission-critical systems. The 30-second garbage collection
pause times experienced with traditional Java virtual machines are incompatible with
the real-time execution requirements of most mission-critical systems.

Special real-time virtual machines have been implemented to support pre-
emptible and incremental operation of the garbage collector. With these virtual ma-
chines, the interference by garbage collection on application code can be statistically
bounded, making this approach suitable for soft real-time systems with timing con-
straints measured in the hundreds of microseconds.

One of the costs of automatic garbage collection is the overhead of implement-
ing sharing protocols between application threads. Application threads are continual-
ly modifying the way objects relate to each other within memory, while garbage col-
lection threads are continually trying to identify objects that are no longer reached
from any threads in the system. This coordination overhead is one of the main rea-
sons that compiled Java programs run at one third to one half of the speed of opti-
mized C code.

BSSC 2005(2) Issue 1.0 90
CHAPTER 9
REAL-TIME JAVA

The complexity of the garbage collection process and of any software that de-
pends on garbage collection for reliable execution is beyond the reach of cost-effec-
tive static analysis to guarantee compliance with all hard real-time constraints. Thus,
the use of automatic garbage collection for software that has hard real-time con-
straints is not recommended.

9.3 Soft Real-Time Development Guidelines
The following guidelines apply to soft real-time software development.

Rule 92: Use the Java 2 Standard Edition (J2SE) platform.

Rationale
The benefits that Java brings to soft real-time mission-critical systems are most

relevant to large, complex, dynamic applications. Since the J2ME platform repre-
sents an incompatible subset of full J2SE, it does not provide access to J2SE-stan-
dard COTS library components. If applications require J2EE capabilities, obtain the
specific J2EE libraries that are required and run them on a soft real-time J2SE plat-
form. Alternatively, run the required J2EE functionality on traditional (non real-time)
JVM platforms which communicate with the soft real-time JVM machines using RMI
or other networking protocols.

Rule 93: Baseline a particular version of the J2SE libraries.

Rationale
For any given development project, it is necessary to standardize on a particular

version of the J2SE libraries (1.2, 1.3, 1.4, 5.0?). Document this decision to all devel-
opers and managers.

Recommendation 61: Consider using JFace and SWT for Graphical User Inter-
faces.

Rationale
Most mission-critical software does not require graphical user interfaces. If soft

real-time systems do require graphical user interfaces, consider using the open-
source SWT and Jface [SWT] libraries instead of the proprietary AWT and Swing
components. SWT and JFace may run in less memory and faster than AWT and
Swing.

Rule 94: Use cooperating hard real-time components to interface with native code.

Rationale
The JNI protocol introduces significant data marshalling overhead when objects

are shared between the Java and native environments. Furthermore, the sharing
protocols may expose Java objects and “private” virtual machine data structures to
undisciplined C components, introducing the risk that misbehaving C code will com-
promise the integrity of the virtual machine environment. Experience of existing cus-
tomers in several real projects involving hundreds of man years of development doc-
ument that these risks are real, having cost development teams significant effort and

BSSC 2005(2) Issue 1.0 91
CHAPTER 9
REAL-TIME JAVA

calendar time to correct errors introduced into the Java environment by C developers
writing JNI components.

Better performance and stronger separation of concerns is realized by imple-
menting all interfaces to native code as cooperating hard real-time components.

Rule 95: Use cooperating hard real-time components to implement performance-
critical code.

If the throughput of certain soft real-time components is not sufficient to meet
performance requirements, implement the required functionality as cooperating hard
real-time components.

Rationale
Because the code generation model for hard real-time components does not

need to coordinate with garbage collection, these components generally run two to
three times faster than soft real-time Java components.

Rule 96: Use cooperating hard real-time components to interact directly with hard-
ware devices.

If the soft real-time component needs to communicate directly with hardware
devices which are not represented by operating system device drivers, implement
the device driver as a cooperating hard real-time component. If the operating system
provides a device driver that represents this device as a file, use the standard
java.io or java.nio libraries to access the device. If the operating system pro-
vides a device driver with a different API than the file system, use a cooperating hard
real-time component to implement the interface to the device driver.

Recommendation 62: Restrict the use of advanced libraries.

Certain standard Java libraries are not available in certain embedded environ-
ments because the underlying operating system or hardware is missing desired ca-
pabilities. Among the libraries that may not be available on all platforms, listed in de-
creasing order of portability concern, are:

• JFace and SWT libraries: These graphical libraries are only available on sys-
tems that have graphical hardware and the SWT integration software required to
drive the graphical hardware.

• java.nio libraries: Many embedded operating systems do not support asyn-
chronous I/O.

• java.io libraries: Some embedded targets have no notion of stdin, stdout,
or stderr. Some embedded targets have no notion of non-volatile file storage.

• java.net libraries: Some embedded targets have no network connectivity.

Recognize that the use of these libraries may limit the portability of code and
may contribute to the future maintenance burden.

Rule 97: Isolate JVM dependencies.

Existing soft real-time virtual machines differ in how they support certain impor-
tant mission-critical capabilities. Wrap all JVM dependencies in special classes that

BSSC 2005(2) Issue 1.0 92
CHAPTER 9
REAL-TIME JAVA

can be given extra attention if the code must be ported to a different JVM. Specific
services that require this handling include:

• High-precision timing services: obtaining real-time with greater precision than 1
ms; drift-free sleep(), wait(), and join() services.

• CPU-time accounting: How much CPU time consumed by each thread? How
much CPU time consumed at each priority level?

• Garbage collection pacing: How to monitor the memory allocation behavior of
the application software and the effectiveness of GC? How to schedule GC to
maintain pace with allocation rates?

• Scheduling: If a virtual machine offers high-level scheduling support, such as
earliest-deadline first or maximum accrued utility scheduling, the scheduling and
synchronization services should be isolated within a centralized API.

Recommendation 63: Carefully select an appropriate soft real-time virtual machine.

One of the most important decisions in determining the success of a soft real-
time Java development effort is the selection of a suitable JVM. Each development
project has unique requirements and constraints, so it may be necessary to indepen-
dently evaluate the relevance of various available virtual machine products for each
development effort. In selecting a virtual machine, consider at minimum each of the
following issues:

• Real-Time garbage collection should have a maximum preemption latency and
should be incremental so that when the garbage collector is preempted by high-
er priority application threads, it can resume with the next increment of work
when the application thread relinquishes the CPU. The garbage collector should
defragment the heap in order to assure reliable long-running operation. And it
must accurately reclaim all dead memory rather than reclaiming only a conser-
vative approximation of the dead memory. Finally, it must be paced to assure
that memory is reclaimed at rates consistent with the application’s steady-state
demand for new memory allocation.

Please note that virtual machines exist that do not need to be paced.

The realtime garbage collector guarantees for such virtual machines that

enough memory will be reclaimed by tying GC to allocation.

If code is compiled when it is loaded, this is called a

load time compiler. Load time compilation is an older technique used in

list implementations.

• All synchronization locks must implement priority inheritance. All wait queues
must be ordered according to thread priorities.

• The virtual machine needs to provide monitoring facilities to allow supervisory
threads to observe and measure the real-time resource requirements of individ-
ual components. Among required capabilities are the ability to determine how
much CPU time is consumed by particular threads, how much CPU time is con-
sumed by the garbage collection thread(s), the rates at which particular threads
are allocating memory, and the total amount of memory being retained as live.

BSSC 2005(2) Issue 1.0 93
CHAPTER 9
REAL-TIME JAVA

• Determine which release level of the J2SE libraries are required for a particular
project (1.2, 1.3, 1.4, 5.0?) and assure that the vendor is able to support the de-
sired library version throughout the duration of your development project.

• Assure that the virtual machine provides libraries for high-precision time mea-
surements, and for drift-free wait(), join(), and sleep() services.

• If the system is statically compiled and loaded, assure that the virtual machine
is supported by appropriate Ahead-of-Time compilation and linking tools.

• If the system must dynamically load components, assure that the dynamic class
loader can be configured to run at lower priority than the ongoing real-time ap-
plication workload. If the dynamic class loader must perform JIT compilation,
assure that the JIT compiler can be configured to support eager linking and
translation, meaning that all components are fully resolved and translated when
the first of the interdependent modules is loaded, rather than deferring JIT
translation until the moment each code module is first executed. Some systems
need to dynamically load components which have themselves been ahead-of-
time compiled. Verify this capability is supported if relevant to your project re-
quirements.

• Assure that the virtual machine includes necessary development tools, including
symbolic debugging of both interpreted and compiled code and run-time perfor-
mance and memory usage profiling.

• If the planned development project may require integration with cooperating
hard real-time components, assure that the virtual machine includes support for
cooperating hard real-time Java components.

9.4 Hard Real-Time Development Guidelines
The following guidelines apply to soft real-time software development. The rec-

ommendations of this section are based on standards for safety-critical and mission-
critical Java which are being developed within the Open Group.

Rule 98: Use a hard real-time subset of the standard Java libraries.

Rationale
There is no automatic garbage collection in the hard real-time domain so many

of the standard Java libraries will not function reliably. Other motivations to restrict
usage of the standard libraries are (1) to reduce the standard memory footprint and
(2) to reduce the amount of code that must be certified in case safety certification re-
quirements must be satisfied.

Rule 99: Use a hard real-time subset of the real-time specification for Java.

Rationale
The full RTSJ includes many capabilities that are not portable between different

compliant implementations. Furthermore, supporting the full generality of the RTSJ
imposes certain performance-limiting restrictions on the implementation.

BSSC 2005(2) Issue 1.0 94
CHAPTER 9
REAL-TIME JAVA

Rule 100: Use enhanced replacements for certain RTSJ libraries.

Certain RTSJ libraries lack the features desired for hard real-time and safety-
critical development. Analogous replacement libraries are available in the
javax.realtime.util.sc package. Use these replacement libraries instead of
the traditional RTSJ libraries. The specific replacement libraries, which differ only
slightly from their RTSJ counterparts, are listed below:

• AbsoluteTime
• AperiodicParameters
• AsyncEvent
• BoundAsyncEventHandler
• Clock
• HighResolutionTime
• NoHeapRealtimeThread
• OneShotTimer
• PeriodicParameters
• PeriodicTimer
• RelativeTime
• ReleaseParameters
• SizeEstimator
• SporadicParameters
• Timer

Rule 101: Assure availability of supplemental libraries.

If particular applications require additional libraries beyond this minimal set, as-
sure that the libraries are available for all intended target platforms.

Rule 102: Use an intelligent linker and annotations to guide initialization of static
variables.

In traditional Java, class variables are to be initialized “immediately before first
use”. This requires run-time checks, introduces non-determinism into the worst-case
execution-time analysis, and hinders efficient translation of programs for native exe-
cution. Further, it introduces certain race conditions in which the initial values of par-
ticular class variables (even the values of certain final variables) depend on the se-
quence in which classes are accessed (and initialized). Use an intelligent static linker
guided by @StaticDependency and @InitializeAtStartup annotations to per-
form initialization of all static variables.

Note: Still an open issue for safety-critical applications in the Open Group RT
Java Forum process.

BSSC 2005(2) Issue 1.0 95
CHAPTER 9
REAL-TIME JAVA

Rule 103: Use only 128 priority levels for NoHeapRealtimeThread.
The official RTSJ specification states that a compliant implementation must pro-

vide at least 28 priorities, but may support many more. For hard real-time mission-
critical development, application software should limit its use of priorities to the range
from 1 though 128. Vendors can readily support this priority range as a standard
hard real-time mission-critical platform.

Rule 104: Do not instantiate java.lang.Thread or
javax.realtime.RealtimeThread.

The only threads allowed to run in a hard real-time program are instances of
NoHeapRealtimeThread.

Rule 105: Preallocate Throwable instances.

Rationale
The traditional Java convention of allocating a new Throwable each time an

exceptional condition is encountered is not compatible with limited-memory hard
real-time development practices. Preallocate necessary Throwable objects in
scopes that are sufficiently visible that they can be seen by the intended catch
statement. Throw the preallocated ImmortalMemory Throwable instances avail-
able in javax.realtime.util.sc.PreallocatedExceptions when appropri-
ate.

Rule 106: Restrict access to Throwable attributes.

Rationale
In a traditional Java environment, memory is allocated to represent private infor-

mation associated with each thrown Throwable. Because a hard real-time environ-
ment is assumed to have limited memory resources and no automatic garbage col-
lection, the typical hard real-time programming style avoids allocation of memory for
each thrown exception. One fixed-size buffer holding up to 20
StackTraceElement objects is maintained for each thread. Each time an excep-
tion is thrown, this buffer is overwritten with no more than 20 of the inner-most nest-
ed method activation frames. The buffer’s contents can be copied by invoking
Throwable.getStackTrace() before any other throw statements are executed
by the thread. Any code that attempts to access more than 20 stack frames, or de-
lays invocation of Throwable.getStackTrace() until after a second Throwable
has been thrown, will not run reliably in the hard real-time environment.

Rule 107: Annotate all program components to Indicate scoped memory behaviors.

In order to enable static analysis to prove referential integrity without the need
for run-time fetch and store checks, programmers must annotate their software to
identify variables that might hold references to objects allocated in temporary memo-
ry scopes.

BSSC 2005(2) Issue 1.0 96
CHAPTER 9
REAL-TIME JAVA

Rule 108: Carefully restrict use of methods declared with
@AllowCheckedScopedLinks annotation.

Rationale
Methods with this annotation may terminate with a run-time exception resulting

from inappropriate assignment operations. Automated static analysis tools are not
able to guarantee the absence of these run-time exceptions, and reference assign-
ment operations contained within these methods will run slower than other code be-
cause each assignment must be accompanied by a run-time check. For each
method that is declared with the @AllowCheckedScopedLinks annotation, pro-
grammers should provide commentary explaining why they believe the code will not
violate scoped-memory referential integrity rules.

Note: Still an open issue for safety-critical applications in the Open Group RT
Java Forum process.

Rule 109: Carefully restrict use of methods declared with @ImmortalAllocation
annotation.

As a rule of thumb, ImmortalMemory should only be allocated during applica-
tion startup. Any other allocation of ImmortalMemory introduces the risk that the
supply of ImmortalMemory will become exhausted in a long-running application.

Rule 110: Use @StaticAnalyzable annotation to identify methods with bounded
resource needs.

The @StaticAnalyzable annotation identifies methods that have bounded
CPU time and memory needs. For any program component declared with the
@StaticAnalyzable annotation, programmers should provide StaticLimit as-
sertions to identify iteration limits on loops and other resource constraints.

Note: The definition of @StaticAnalyzable is still insufficiently defined. What is

statically analyzable is highly dependent on the tools available. The use

of libraries dictates a notation about the order of execution of a method

and the corresponding dependencies so that the actual execution time can be

determined. For example, there may be some structure with n elements, and we

know the elements can be examined. That alone is not sufficient to

give a worst case execution time, but if n is know, then a maximum time can

be determined. A combination of functional verification, data flow

analysis, and worst case execution analysis can provide such an analysis.

The important point is that the computational effort and dependencies are

know. One can say that all methods should have well defined resource usage

bounds.

BSSC 2005(2) Issue 1.0 97
CHAPTER 9
REAL-TIME JAVA

Rule 111: Use hierarchical organization of memory to support software modules.

Organize software modules to support modular composition of components so
that all memory allocation for individual components, including the memory for all of
the threads that comprise the software module, is hierarchically organized. The
memory for the complete module is incrementally divided into memory for sub-mod-
ules. Each sub-module may further divide its memory for smaller sub-modules. All
memory reclamation is handled in last-in-first-out order with respect to allocation se-
quence.

Rule 112: Use the @TraditionalJavaShared conventions to share objects with
traditional Java.

When it is necessary or desirable to share hard real-time data and/or control
abstractions with the traditional Java domain, use the @TraditionalJavaShared
and @TraditionalJavaMethod annotations to arrange the sharing of selected ob-
jects.

Note: Still an open issue for safety-critical applications in the Open Group RT
Java Forum process.

Rule 113: Avoid synchronized statements.

When synchronization is required, use synchronized methods instead of indi-
vidual statements.

Rule 114: Inherit from PCP in any class that uses PriorityCeilingEmulation
MonitorControl policy.

Developers should decide when the synchronization code is written whether it
will use PriorityCeilingEmulation or PriorityInheritance
MonitorControl policy. Code that intends to use PriorityCeilingEmulation
should inherit from the PCP interface.

Rule 115: Inherit from Atomic in any class that synchronizes with interrupt han-
dlers.

The Atomic interface extends the PCP interface. The byte-code verifier en-
forces that all synchronized methods belonging to classes that implement Atomic are
@StaticAnalyzable in all execution modes.

Note: Still an open issue in the Open Group RT Java Forum process.

Rule 116: Annotate the ceilingPriority() method of Atomic and PCP classes
with @Ceiling.

The @Ceiling annotation expects its value attribute to be set to the ceiling
priority at which this object expects to synchronize. Availability of an object’s intend-
ed ceiling priority as a source code attribute makes it possible to prove compatibility
between components using static analysis tools. In particular, the static analyzer can
demonstrate that nested locks have strictly increasing ceiling priority values.

BSSC 2005(2) Issue 1.0 98
CHAPTER 9
REAL-TIME JAVA

Rule 117: Do not override Object.finalize().

In traditional Java code, an object’s finalize() method is invoked by the
garbage collector before the object’s memory is reclaimed. In the hard real-time do-
main, we do not have a garbage collector. Memory is reclaimed as particular control
contexts are left. If finalization code is required, place it in in the finally clause of
a try-finally statement.

Recommendation 64: Use development tools to enforce consistency with hard real-
time guidelines.

To enforce that programmers make proper use of the hard real-time API sub-
sets and that all code is consistent with the intent of the hard real-time programming
annotations described in this section, use special byte-code verification tools that
help assure reliable and efficient implementation of programmer intent.

9.5 Safety-Critical Development Guidelines
Safety-critical developers use a subset of the full hard real-time mission-critical

capabilities.

Rule 118: Except where indicated to the contrary, use hard real-time programming
guidelines.

In general, all of the hard real-time guidelines are appropriate for safety-critical
development, except that certain practices acceptable for hard real-time mission-crit-
ical development should be avoided with safety-critical software.

Rule 119: Use only 28 priority levels for NoHeapRealtimeThread.

The official RTSJ specification states that a compliant implementation must pro-
vide at least 28 priorities, but may support many more. For safety-critical develop-
ment, application software should limit its use of priorities to the range from 1 though
28. Vendors can readily support this priority range as a standard safety-critical plat-
form.

Rule 120: Prohibit use of @OmitSubscriptChecking annotation.

In safety-critical code, turning off subscript checking is strongly discouraged,
even though static analysis of the program presumably has proven that the program
will not attempt to access invalid array elements. In safety-critical systems, the key
benefit of subscript checking is to prevent an error in one component from propagat-
ing to other components.

Note: Checking should only be turned of automatically by a compiler that can
prove a given check is unnecessary!

Rule 121: Prohibit invocation of methods declared with
@AllowCheckedScopedLinks annotation.

This annotation is designed to allow programmers to use practices that cannot
be certified safe by automatic static theorem provers. Thus, there is a risk that any

BSSC 2005(2) Issue 1.0 99
CHAPTER 9
REAL-TIME JAVA

software making use of this annotation will abort with a run-time exception. Allow this
practice only in safety-critical systems for which developers are able to provide abso-
lute proof that run-time exceptions will not be thrown.

Rule 122: Require all code to be @StaticAnalyzable.

In hard real-time mission-critical code, the use of the @StaticAnalyzable an-
notation is entirely optional. In safety-critical code, we require all components to have
this annotation, and for all relevant modes of analysis to have a true value for the
enforce_analysis attribute.

Rule 123: Require all classes with Synchronized methods to inherit PCP or
Atomic.

The safety-critical profile does not allow the use of priority inheritance locking.

Note: Still an open issue for safety-critical applications in the Open Group RT
Java Forum process.

Rule 124: Prohibit dynamic class loading.

While dynamic class loading may be supported in the hard real-time mission-
critical domain, it should be strictly avoided in safety-critical software.

Rule 125: Prohibit use of blocking libraries.

Because of difficulties analyzing blocking interaction times when software com-
ponents contend for shared resources, all services that might block are forbidden in
safety-critical code. Specifically, the following APIs should not be invoked from safe-
ty-critical application software:

• java.lang.Object.wait()
• java.lang.Object.wait(long)
• java.lang.Object.wait(long, int)
• java.lang.Thread.join()
• java.lang.Thread.join(long)
• java.lang.Thread.join(long, int)
• java.lang.Thread.sleep(long)
• java.lang.Thread.sleep(long, int)
• javax.realtime.util.sc.ThreadStack.join();

Rule 126: Prohibit use of PriorityInheritance MonitorControl policy.

Priority inheritance is more difficult to certify, more complicated to implement,
and less efficient than priority ceiling emulation. Thus, we prohibit its use in safety-
critical software systems.

BSSC 2005(2) Issue 1.0 100
CHAPTER 9
REAL-TIME JAVA

Rule 127: Do not share safety-critical objects with a traditional Java virtual machine.

Combining safety-critical code with traditional Java code using the
@TraditionalJavaMethod and @TraditionalJavaShared conventions com-
promises the integrity of the safety-certification artifacts. This practice is therefore
strictly forbidden.

Recommendation 65: Use development tools to enforce consistency with safety-
critical guidelines.

To enforce that programmers make proper use of the safety-critical subset and
that all code is consistent with the intent of the hard real-time programming annota-
tions described in this section, use special byte-code verification tools that help as-
sure reliable and efficient implementation of programmer intent.

BSSC 2005(2) Issue 1.0 101
CHAPTER 10
EMBEDDING C++ OR C IN JAVA

Chapter 10
Embedding C++ or C in Java

10.1 Introduction
There are many legacy systems written in C and C++. Sometimes the use of

these languages is preferred for numerical calculations (many libraries exist) or for
easy access to hardware. Sometimes it is also company or project policy to write
code in these languages.

It can be a solution to embed such C/C++ code in Java using the JNI API, in or-
der to make such applications interoperate with Java applications. Other solutions
exist however and are normally preferable to embedding C/C++ code in Java, as
such embedding is often complex and error-prone.

However, in some cases, the direct embedding of native code becomes neces-
sary for performance reasons or to overcome the strict access restrictions that the
Java environment sometimes imposes. If embedding of C++ or C code is required,
these guidelines should help to increase portability, safety and performance on dif-
ferent Java platforms.

10.2 Alternatives to JNI

Recommendation 66: Avoid embedding C++ or C code in Java as much as possi-
ble. Use other coupling solutions instead if C++ or C code needs to be integrated to
the software product.

Rationale
Embedding C++ and C code in Java can be done with the Java Native Interface

(JNI)-API. However this API is very complex and error-prone. It is better to interface
with C/C++ via CORBA or via XML-files. This keeps the C/C++ environment suffi-
ciently separated from the Java-platform, and has the following advantages:

• Better interoperability

• Less errors

• Java-component retains all the power of its object-oriented features

• Less complex than when using JNI

• Well-defined interfaces

• Interoperability, security and communication services when CORBA is used.

BSSC 2005(2) Issue 1.0 102
CHAPTER 10
EMBEDDING C++ OR C IN JAVA

10.3 Safety
C++ or C code is not covered by the advanced safety features (access control,

index, type and null pointer checks, exception handling, etc.) Java developers are
used to. For code safety, these checks need to be performed explicitly by the devel-
oper.

Rule 128: Use the established coding standards for C++ or C for the development
of C++ or C code that is embedded into the Java code.

Rationale
Respecting the established conventions helps to avoid errors, eases under-

standing of the code by developers with a C++ or C background in the area, and en-
ables interoperability with existing C++ or C code.

Rule 129: Check for ExceptionOccurred() after each call of a function in the
JNI interface if that may cause an exception.

Rationale
Functions available in the JNI interface (as defined in C/C++ include file

"jni.h") often signal an error condition to the caller by storing an exception in the
current JNI environment. Unlike in Java code, this exception is not thrown and prop-
agated automatically to the next surrounding exception handler that accepts an ex-
ception of this kind. Instead, execution of C++ or C code continues normally unless
there is an explicit check that no exception occurred.

Checking for exceptions is therefore required after each call that may cause an
exception to indicate an error situation. Checking the return value of such a call is
generally not sufficient.

Rule 130: Mark native methods as private.

Rationale
Native functions may perform operations that are not safe with respect to the

checks performed by Java code. If public access to a native function is required, a
wrapper function written in Java can ensure that the call is performed from an envi-
ronment that guarantees that the call is safe..

Example
private static native int nativeReadRegister(int register);
public static int readRegister(int register)
{
 int result;
 if (isLegalRegister(register) && isReady(register))
 {
 result = nativeReadRegister(register);
 } // end if
 else

BSSC 2005(2) Issue 1.0 103
CHAPTER 10
EMBEDDING C++ OR C IN JAVA

 {
 throw new IllegalArgumentException(
 "register: "+register);
 } // end else
 return result;
} // end method

Rule 131: Select method names for C++ or C methods that state clearly that such a
method is a native method.

Common means to mark a native method are a method name that ends with
the character '0' or that starts with the string "native", e.g., nativeReadRegister
() or readRegister0().

Rationale
Marking native methods avoids confusion.

Rule 132: Avoid name overloading for native methods.

Rationale
The JNI name mangling rules for overloaded methods (methods that have

equal name but different argument lists) results in very cumbersome names. Adding
an overloaded native method to an existing class causes renaming the C++ or C
function of existing native methods that were not overloaded before, causing difficult
linking problems of the application.

Rule 133: Do not use weak global references.

Rationale
A weak global references obtain by NewWeakGlobalRef() may change its

value to null at any point in time. This makes error detection and handling extreme-
ly difficult.

Note: In general, this is a good rule; however, there may be cases where weak

references are necessary to insure that back pointers from native code do

not prevent garbage collection. In that case, the code must insure that

whenever the native object is available, the back pointer (weak pointer) is

valid. Still explicit deallocation of native objects is preferred.

10.4 Performance
Performance gains can be one important reason to embed C++ or C code into

Java code. However, there is additional overhead involved in the use of JNI that may
work against the performance gained through the use of C++ or C code.

The additional overhead from JNI can be explained in many different ways::

BSSC 2005(2) Issue 1.0 104
CHAPTER 10
EMBEDDING C++ OR C IN JAVA

• References passed to C++ or C code need to be protected from the garbage
collector activity. Particularly, the garbage collector must not reclaim memory of
an object that is referenced from JNI code and it cannot update a reference val-
ue so it may not move objects in order to defragment memory.

• Since JNI code may run for an arbitrary amount of time that is not known the to
VM, detaching the thread that performs the JNI call from the rest of the VM may
be necessary in order to avoid blocking other Java threads.

• The calling conventions of JNI are different from the calling conventions that are
used internally by compiled or interpreted code running within the VM. Special
wrapper functions are required to interface between the VM and native methods
causing a higher call overhead compared to normal Java method calls.

Recommendation 67: Avoid the use of C++ or C code embedded using the JNI to
increase performance.

Rationale
The additional overhead of JNI and the loss in safety and portability are likely to

counter the performance gain.

Recommendation 68: Avoid passing reference values to native code.

Rationale
Passing reference values to native code causes extra overhead to protect these

references from garbage collection. Furthermore, referenced values cannot be used
directly within JNI code, they can only be accessed through calls to functions in the
JNI (as defined in "jni.h") causing additional overhead.

Example
Do not pass a reference to an instance of class Point, but pass two integers

for the X any Y coordinate values instead. These values can then be used directly in
the native code.

Rule 134: Use DeleteLocalRef() to free references in native code that were ob-
tained in a loop.

Rationale
The protection of reference values passed to native code requires memory that

needs to be allocated by the VM. If references are obtained in a loop, even if these
references are all equal as in repeated calls to GetFieldId() for the same field,
the memory that is required to protect these references will grow unless the refer-
ences are released by calls to DeleteLocalRef().

Rule 135: Use NewGlobalRef()/DeleteGlobalRef() only for references that
are stored outside of reachable memory that survives from one JNI call to the next.

Rationale
The overhead for creation and deletion of a global reference is typically signifi-

BSSC 2005(2) Issue 1.0 105
CHAPTER 10
EMBEDDING C++ OR C IN JAVA

cantly higher than that for local references. Furthermore, a forgotten
DeleteGlobalRef() will make it impossible for the VM to ever release the memo-
ry that was protected globally, causing a memory leak.

Recommendation 69: Avoid calling back into Java code from C/C++ code.

Rationale
The JNI to Java calling conventions are different to the internal calling conven-

tions used by the VM and require special treatment. A call of a Java method from
within JNI code is typically much more expensive than the corresponding call from
within Java code.

Recommendation 70: Put as much functionality as possible into the Java code and
as little as possible in the JNI code.

Rationale
Larger C++/C functionality usually implies complexer interactions between

C/C++ and Java code, which in turn may lead to more errors, and reduced reliability
and efficiency.

Example
Throwing an exception from within JNI code is a complex procedure, it is better

defer this activity to Java code that is simpler.

Recommendation 71: Avoid Get*ArrayElements() and
Get*ArrayElementsCritical() functions.

Rationale
These functions may require allocation of temporary arrays and copying of the

array contents into a temporary array. The reasons for the need to copy the data are
that the internal representation of arrays that is used by the virtual machine may be
different than a simple C++ or C array. Furthermore, the garbage collector may
move arrays when it is defragmenting the heap, which would be impossible if C++ or
C code holds a direct reference to the array data.

Apart from the allocation and copying overhead, these functions may fail due to
memory fragmentation or low memory. They are unsafe for long running applica-
tions.

Recommendation 72: Avoid frequent calls to the reflective functions FindClass
(), GetMethodID(), GetFieldID(), and GetStaticFieldID().

Rationale
These functions perform an expensive string search. If frequent accesses to a

class, method or field are required, obtain these values by a native initialization func-
tion, protect them via NewGlobalRef and store the results in a data structure ac-
cessible from the code that needs to access these values.

BSSC 2005(2) Issue 1.0 106
CHAPTER 10
EMBEDDING C++ OR C IN JAVA

10.5 Low Level Hardware Access

Rule 136: Avoid using JNI for native HW access if alternative means are available.

Rationale
The RawMemoryAccess classes from The Real Time Specification for Java

[RTSJ] provide safe means for direct hardware access that avoids the danger and
overhead involved with JNI code.

10.6 Non-Standard Native Interfaces
Some Java implementations provide proprietary native interfaces in addition to

the standard JNI. These interfaces may provide higher performance since they may
use the same interface that is used by compiled Java code, they can avoid the de-
taching and attaching overhead from the VM and they can avoid the pointer register-
ing and unregistering overhead.

However, these interfaces are proprietary, i.e., they are not portable between
different VMs. Also, code written for them is typically more complex since many as-
pects of the internals of the underlying VM and garbage collector may be exposed.

Rule 137: Do not use non-standard native interfaces unless there are very good
reasons to do so.

Rationale
Giving up on the portability and compatibility with other Java environments is a

major disadvantage for all future reuse of the code. Only if the achievable perfor-
mance using pure Java or JNI is absolutely insufficient to solve the problem at hand,
the use of proprietary interfaces may be justified.

Rule 138: Restrict the use of non-standard native interface uses to as few functions
as possible.

Rationale
Even if the use of a non-standard native interface is required at some point, this

point should clearly be isolated from the rest of the application. Such methods should
be defined in a separate class that is clearly documented to be dependent on the
corresponding virtual machine.

All less critical native code should use the standard JNI to interact with the Java
code in a portable way.

BSSC 2005(2) Issue 1.0 107
CHAPTER 11
SECURITY

Chapter 11
Security

11.1 Introduction
Security is a complex area, which nowadays represents a concern for organiza-

tions of all sizes and in all fields of endeavor. ESA is no exception. On the one hand,
its international nature poses security challenges, and, on the other hand, security
plays an important role in ESA's Galileo and GMES projects.)

Although making a software system secure goes way beyond coding, adequate
coding is still fundamental to achieve proper security. The following rules and recom-
mendations, are intended to facilitate producing more secure and reliable Java code.

11.2 The Java Security Framework
The standard Java platform (compiler, bytecode verifier, runtime system) is de-

signed to enforce the following rules:

• Class member access (as defined by the private, protected, and public
keywords) is strictly adhered to.

• Programs cannot access arbitrary memory locations (pointers do not exist in
standard Java).

• Entities that are declared as final cannot be changed.

• Variables cannot be used before they are initialized.

• Array bounds are checked during all array accesses.

• Objects of one type cannot be arbitrarily cast into objects of other types.

Additionally, the platform implements an elaborated access control mechanism,
making it possible to restrict access to system resources in a fine-grained way.

Real-time Java implementations may not enforce some or all of these restric-
tions. Particularly, it is typical for real-time Java applications to directly access mem-
ory locations in order to control hardware devices or read information from them.

11.3 Privileged Code
Java's access control system is responsible for protecting system resources

from unauthorized access. The basic mechanism used for this purpose is to guaran-
tee that all code traversed by a thread, up to the current execution point, has appro-
priate permissions. It will often be the case, though, that a program needs to access
resources that it normally could not use, given its permissions. The privileged blocks
API [SUNPriv] was designed to handle such situations in a secure, controlled way.

BSSC 2005(2) Issue 1.0 108
CHAPTER 11
SECURITY

Code in a privileged block runs with the permissions granted to the block, with-
out taking into account the security restrictions of any caller code. Privileged blocks
make the Java security model a lot more flexible, by making it possible to wrap po-
tentially insecure operations into code that, in some way or another, restricts or con-
trols access to them. This additional flexibility comes, however, at some cost, be-
cause every privileged block poses a certain security risk that must be properly as-
sessed and managed.

Recommendation 73: Keep privileged code as short as possible.

Rationale
Errors in privileged code can potentially lead to security exploits. For this rea-

son, privileged code should always be carefully audited (as opposite to just tested)
before deploying it. Making privileged code as short as possible, not only simplifies
the process of auditing it, but reduces the risk of dangerous errors being overlooked.

Recommendation 74: Check all uses of tainted variables in privileged code.

A variable used in a privileged block is considered tainted, if it contains a value
that was directly passed as parameter by the method caller.

Rationale
All uses of tainted variables should be carefully checked to make sure they can-

not lead to inappropriate privilege escalation.

Example
Consider the following method:
public static String getProp(final String name)
{
 return (String) AccessController.doPrivileged(new
 PrivilegedAction()
 {
 public Object run()

 {
 // 'name' is tainted, beware!
 return System.getProperty(name);
 } // end method
 } // end constructor
} // end method
The value of parameter name will be used directly to retrieve a property, without

imposing any restrictions or making any checks on it. This means that any class be-
ing able to call this public method will be able to retrieve arbitrary properties.

Uses of tainted variables in privileged code must always be carefully checked.
Helper methods allowing unrestricted access to a resource should always be de-
clared private.

BSSC 2005(2) Issue 1.0 109
CHAPTER 11
SECURITY

11.4 Secure Coding

Rule 139: Refrain from using non-final public static variables.

Rationale
It is impossible to check that code changing such variables has adequate per-

missions.

Recommendation 75: Reduce the scope of methods as much as possible.

Make as few methods public as strictly necessary. A proper design of class
interfaces done before implementing the class should help reduce the number of
public methods to a minimum.

Rationale
Every additional public method increases the risk of unauthorized access to

privileged data, and makes code auditing harder.

Rule 140: Never return references to internal mutable objects containing sensitive
data.

Rationale
Internal objects are part of the state of the object containing them. Returning

references to mutable internal objects makes it possible for a caller to directly alter
the object's state, potentially in dangerous ways. Particularly, containers like arrays,
vectors or hash tables are always mutable, even if the values stored in them are not.
An attacker having access to a container of immutable values cannot change the val-
ues directly, but can alter the set of values stored in the container.

Rule 141: Never store user provided mutable objects directly.

Rationale
User provided mutable objects could be intentionally or unintentionally modified

after being stored, thus indirectly and unexpectedly affecting the internal state of an
object. Instead of storing a reference to the user provided object, a copy (clone)
should be made an stored in its place.

11.5 Serialization
Serialized objects stored in a regular file or traveling along a network connexion

are outside of the control of the Java runtime environment, and therefore not subject
to any of the security measures provided by the Java platform. By altering serialized
object data, an attacker could possibly defeat security measures that would other-
wise be adequate.

BSSC 2005(2) Issue 1.0 110
CHAPTER 11
SECURITY

Rule 142: Use the transient keyword for fields that contain direct handles to sys-
tem resources, or that contain information relative to an address space.

Rationale
A serialized handle to a file or other system resource, could be altered in order

to gain unauthorized access to system resources once the object is deserialized.

Rule 143: Define class specific serializing/deserializing methods.

Rationale
The only way to guarantee that internal class invariants are still valid after dese-

rializing and object, is to write a custom deserializing method that uses the
ObjectInputValidation interface to check invariants.

Recommendation 76: Consider encrypting serialized byte streams.

Rationale
Encrypting a byte stream is an effective way to protect it from accidental or ma-

licious alteration happening during the time it is outside the Java runtime environ-
ment. Unfortunately, encryption also requires the application to take care of encryp-
tion key handling, including generating keys, storing them, and passing them to any
applications needing to read the data.

Rule 144: While deserializing an object of a particular class, use the same set of re-
strictions used while creating objects of the class.

If you impose restrictions on untrusted code to create objects of a certain class,
enforce the same restrictions while deserializing such objects.

Rationale
Deserializing is just another form of object creation. Having laxer restrictions

while deserializing makes any additional restrictions imposed during object creation
superfluous.

Example
If an applet creates a frame, it will always have a warning label. If such a frame

is serialized, the application should make sure that it still has the label after being de-
serialized.

11.6 Native Methods and Security

Recommendation 77: Check native methods before relaying on them for privileged
code.

Native methods can break security in a variety of ways. They should be
checked for:

• Their return value.

BSSC 2005(2) Issue 1.0 111
CHAPTER 11
SECURITY

• Their parameters.

• Whether they bypass security checks.

• Whether they are declared public, protected, private,

• Whether they contain method calls which bypass package-boundaries, thus by-
passing package protection

11.7 Handling Sensitive Information
Sensitive information like user passwords or private encryption keys must be

handled with particular care.

Rule 145: Explicitly clear sensitive information from main memory.

Rationale
Information stored in main memory could possibly be accessed by attackers

gaining access to memory pages after they were used by the application. For this
reason it is always indicated to explicitly overwrite sensitive information as soon as it
is not necessary anymore.

Rule 146: Always store sensitive information in mutable data structures.

Rationale
Immutable data structures cannot be overwritten. Programs can only delete all

references to them, and wait for the garbage collector to release (but not overwrite)
their memory at some unspecified time afterwards. The length of this garbage collec-
tion cycle may open a window of opportunity for attackers to get hold of the sensitive
data.

Example
Use StringBuffer objects instead of String objects to store sensitive pass-

words.

BSSC 2004(1) Issue 10 d5 112
BIBLIOGRAPHY

Bibliography

AMB Ambler, S. Writing Robust Java Code (v17.01d). AmbySoft Inc. 2000.
http://www.ambysoft.com/JavaCodingStandards.pdf

ANT The Apache Ant Project. Home Page. http://ant.apache.org/
ARN Arnold K. et al. The Java™ Programming Language (3rd Edition). Addison-

Wesley, 2000.

AVSI Aerospace Vehicle Systems Institute (AVSI). Guide to the Certification of
Systems with Embedded Object-Oriented Software (Version 1.5).

BLO Bloch, J. Effective Java Programming Language Guide. Addison-Wesley,
2001.

BOL Bollella G. et al. The Real-Time Specification for Java. Addison-Wesley,
2000.

BOO Booch, G. Object-Oriented Analysis and Design with Applications (2nd Edi-
tion). Addison-Wesley, 1993.

BUR Burke E. et al. Java Extreme Programming, O’Reilly & Associates, 2003.

COO Cooper, J. W. Java Design Patterns. Addison-Wesley, 2000.

ECSS-E40-1B
European Space Agency (ESA). Space engineering - Software - Part 1: Prin-
ciples and requirements (ECSS-E-40 Part 1B). November 2003.

ECSS-Q-80B
European Space Agency (ESA). Space Product Assurance (ECSS-Q-80B).
October 2003.

GAM Gamma, E. et al. Design Patterns. Addison-Wesley, 1995.

GNUJAVA

The GNU Java Programming Standard:
http://www.gnu.org/software/classpath/docs/hacking.html#SEC6

GOS Gosling, J et al. The Java Language Specification (2nd Edition). Addison-Wes-
ley, 2000. http://java.sun.com/docs/books/jls/

GRA Grand, M. Patterns in Java - Volume 1 (2nd Edition). Wiley, 2002.

LAP Laplante P. A. editor. Dictionary of Computer Science, Engineering, and
Technology. CRC Press, 2001.

MCL McLaughlin, B. Java & XML. O’Reilly & Associates, 2001.

MEY Meyer, B. Object-Oriented Software Construction (2nd Edition). Prentice-Hall,
1997.

OAK Oaks, S. Java Security. O’Reilly & Associates, 2001.

BSSC 2005(2) Issue 1.0 113
BIBLIOGRAPHY

OOTiABook
Federal Aviation Administration (FAA). Handbook for Object-Oriented Tech-
nology in Aviation (OOTiA). 2004.

OOTiAPage
Federal Aviation Administration (FAA). Object-Oriented Technology in Avia-
tion Web Site. http://shemesh.larc.nasa.gov/foot/

RTSJ Real-Time for JavaTM Expert Group. RTSJ: The Real Time Specification
for Java. https://rtsj.dev.java.net/

SUNDoc
Sun Microsystems. How to Write Doc Comments for the Javadoc Tool.
http://java.sun.com/j2se/javadoc/writingdoccomments/

SUNCode
Sun Microsystems. Code Conventions for the Java Programming Language.
http://java.sun.com/docs/codeconv/

SUNJava
Gosling, J. et al. The Java Language Specification (2nd Edition). Addison-
Wesley, 2000. http://java.sun.com/docs/books/jls/

SUNLook
Sun Microsystems. Java Look and Feel Design Guidelines.
http://java.sun.com/products/jlf/

SUNPref
Sun Microsystems. Java Preferences API.
http://java.sun.com/j2se/1.4.2/docs/guide/lang/preference
s.html

SUNPriv
Sun Microsystems. Java API for Privileged Blocks.
http://java.sun.com/j2se/1.4.2/docs/guide/security/dopriv
ileged.html

SUNTech
Sun Microsystems. Java Technology Page. http://java.sun.com/

SWT Standard Widget Toolkit (SWT) Project. Home Page.
http://www.eclipse.org/swt/

VER Vermeulen, A. et al. The Elements of Java Style. Cambridge University
Press, 2000.

